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Using an interdisciplinary approach to improve efficacy of agricultural conservation 

practices for protecting stream health 

 

Joshua B. Mouser 

 

ABSTRACT 

Protecting water quality, biota, and ecosystem services of streams (cumulatively referred 

to as stream health) while increasing food production is a major global challenge. One 

way to balance these often-competing interests is through the installation of agricultural 

conservation practices, such as excluding livestock from streams via fencing and 

adjusting grazing patterns. However, conservation practices often do not improve stream 

health as expected. Failure to achieve stream health outcomes may be due to biophysical 

(e.g., conservation practices are not appropriate for the landscape) or social reasons (e.g., 

agricultural producers are not willing to use conservation practices). Therefore, the goal 

of my dissertation research was to understand factors influencing effectiveness of 

conservation practices using an interdisciplinary approach that integrates ecological 

engineering, ecology, and social science. My research focuses on southwest Virginia, a 

karst region where cattle grazing is common. In the introduction, I developed a social-

ecological framework that outlines how the natural and social sciences can be used to 

guide effective placement and implementation of conservation practices and explain why 

interdisciplinary approaches are often necessary due to social-ecological connections that 

influence efficacy (i.e., feedbacks, heterogeneity, time lags, and thresholds). In Chapter 1, 

I modeled pollutant transport to characterize watershed features that contribute 

disproportionate amounts of pollutants to streams. I found that water, and associated 

nitrate, is primarily entering streams through subsurface pathways, whereas sediment is 

entering the stream through streambank erosion. Therefore, a combination of 
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conservation practices that stop nitrogen at its source (e.g., nutrient management plans) 

and stabilize streambanks (e.g., fenced riparian buffers) could be useful for protecting 

stream health. For Chapter 2, I sampled water quality, habitat, and macroinvertebrates 

from 31 streams within sub-watersheds that span a range of pollutant yields, conservation 

practice densities, and agricultural land use extent to understand the pathways through 

which conservation practices influence stream health. Agricultural land use increased 

total nitrogen and decreased macroinvertebrate diversity, but conservation practices 

stabilized nitrogen and improved bank stability. Despite such improvements, adverse 

effects on water quality and habitat still limited the biotic assemblage. Therefore, 

innovative conservation practices, higher densities of existing practices, or allowing more 

time for the effects of existing practices to improve water quality and habitat may be 

required to achieve stream health goals. For Chapter 3, I surveyed producers to 

understand if they continue to use their conservation practices after their cost-share 

contracts end (i.e., persistence) and factors that influence persistence. Persistence was 

most strongly related to producers’ attitudes towards the conservation practice, 

producers’ motivations, and practice durability. Therefore, persistence could be 

encouraged by using producers’ motivations to focus messaging on ways conservation 

practices are achieving producers’ goals and allocating more funding to practice 

maintenance. Overall, my interdisciplinary approach led to a greater understanding of 

pollutant dynamics, the pathways through which conservation practices influence stream 

health, and social constraints to persistence. This knowledge can inform what 

conservation practices may be most effective and strategies to keep appropriate practices 

on the landscape long enough to achieve stream health goals.  
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GENERAL AUDIENCE ABSTRACT 

As farmers work to feed a growing worldwide population, streams can inadvertently 

receive pollution, like excess sediment and nitrogen. Too much sediment can clog the 

gills of aquatic animals and reduce their habitat, and too much nitrogen can cause 

excessive plant growth and decrease the amount of oxygen in the water. The cumulative 

effects of pollution from farming can result in streams being unable to support human 

uses such as clean drinking water and fishing opportunities. To increase food production 

while protecting streams, government agencies help farmers pay for the costs of using 

conservation practices that can reduce pollution. Examples of conservation practices 

include keeping livestock out of streams with fences, ensuring the ground is covered with 

plants in between planting crops, and developing a plan for the maximum amount of 

fertilizer that can be used. Unfortunately, conservation practices are sometimes 

ineffective, and streams still become polluted despite their use. My goal was to 

understand why some conservation practices are ineffective and how conservation 

practices might be improved for southwest Virginia. In the introduction, I developed a 

framework that illustrates how connecting the natural and social sciences can improve 

conservation practice efficacy by guiding planning and placement of new practices. In 

Chapter 1, I used a computer program to simulate pollution within streams so that I could 

understand which locations have the greatest amount of pollution and why. I found that 

nitrogen typically enters streams through the water in the soil rather than water running 
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over the land surface and that sediment mostly enters the stream through erosion of the 

streambanks. These results suggest that conservation practices such as limiting the 

amount of nutrients placed on the landscape could be especially effective for reducing 

nitrogen pollution, whereas building fences to exclude cattle from streams and planting 

trees along streams can help reduce sediment pollution. For Chapter 2, I visited 31 

streams in southwest Virginia that had varying amounts of pollution and conservation 

practices and collected water quality, habitat data, and aquatic insects. All these metrics 

are good indicators of pollution, but aquatic insects are particularly excellent indicators 

because their populations respond to cumulative changes in habitat and water quality. 

Streams with more conservation practices did not exhibit more diverse insect 

communities but did show stabilized water quality and habitat. These results indicate that 

the types of conservation practices currently used are not completely protecting streams 

and farmers may need to use more practices, new types of practices, or use their current 

practices for longer periods of time. For Chapter 3, I surveyed farmers to find out if they 

continue to use their conservation practices after funding from agencies ends, as well as 

their motivations for their actions. Farmers indicated that they were more likely to 

continue using conservation practices if their goals for using the practice were achieved 

and that they had difficulty keeping fences and trees from being destroyed by floods and 

wildlife. Government agencies could increase continued use of conservation practices by 

showing farmers how the practices are achieving their goals and by providing more 

funding to maintain practices. By combining research from several fields of study, I was 

able to better understand which conservation practices would be most effective in 

protecting streams and new ways to support farmers in using conservation practices.  
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INTRODUCTION 

Abstract 

Agricultural production can have unintended negative consequences for stream health. To protect 

stream health while continuing production, significant public investments have been made in 

agricultural incentive programs to install conservation practices. Unfortunately, due to a mix of 

biophysical and social factors, conservation practices do not always achieve stream health goals. 

Therefore, we outline a social-ecological framework that can guide interdisciplinary approaches 

that lead to implementation of conservation practices that effectively protects stream health. In 

particular, we describe how the natural sciences are used to select appropriate conservation 

practices based on locations on the landscape where they will be most effective. The social 

sciences can improve efficacy of conservation practices by increasing their adoption and by 

promoting agricultural producers’ persistence in using practices after cost-share contracts end. 

Consideration of the various social-ecological connections that occur when conservation 

practices are placed on the landscape (e.g., heterogeneity, time lags, thresholds, and feedbacks) 

can improve management decisions regarding future implementation of conservation practices, 

ultimately striking a more socially acceptable balance between agricultural production and 

stream health outcomes. 
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Background 

Management choices on agricultural lands commonly involve trade-offs between delivery 

of ecosystem services and maintenance of biological health of the streams and rivers draining 

those lands (Qiu et al. 2021), hereafter referred to as “streams” (contra Czuba and Allen 2023). 

Intensifying production of provisioning services (e.g., food and fiber) can alter the structure and 

function of streams (Allan 2004) by increasing pollutant concentrations (Carpenter et al. 1998), 

changing physical habitat (Newcombe and Macdonald 1991; Trimble and Mendel 1995), and 

altering flow and temperature regimes (Poff et al. 1997; Foufoula-Georgiou et al. 2015). Such 

changes to streams have contributed to the imperilment of many North American aquatic species, 

including fishes (Jelks et al. 2008), mussels (Strayer et al. 2004), gastropods (Johnson et al. 

2013), and crayfishes (Taylor et al. 2007). Loss of aquatic species further alters the structure and 

function of streams and reduces their ability to provide crucial ecosystems services (Balvanera et 

al. 2006; Harrison et al. 2014), such as clean drinking water, climate regulation, and recreational 

opportunities (Millennium Ecosystem Assessment 2005; Villamagna et al. 2013). A decline in a 

stream’s capacity to provide these services is commonly considered a decline in stream health 

(Meyer 1997; Angermeier and Karr 2019). 

In the United States, a healthy stream is broadly defined by the Clean Water Act as 

‘fishable and swimmable’, reflecting the overarching importance of providing ecosystem 

services. Unhealthy streams are often placed on a state’s 303(d) list of impaired waters because 

they are not meeting water quality standards that support one or more specified uses (e.g., 

protection of aquatic life or recreation) designated by the Clean Water Act, 33 U.S.C. §1251 et 

seq (1972). This triggers a state to develop and submit a total maximum daily load (TMDL) to 

the U.S. Environmental Protection Agency (USEPA). A TMDL is the maximum amount of the 
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pollutant causing the impairment that can enter the stream from the surrounding watershed and 

still allow the stream to meet water quality standards (USEPA 2024). Meeting TMDLs is often 

accomplished via regulatory actions imposed by the USEPA to reduce permitted point sources. 

Reduction of non-point sources of pollution is accomplished by many programs through various 

agencies and voluntary actions by agricultural producers, the latter of which is our focus.  

Voluntary implementation of agricultural conservation practices (also known as best 

management practices), is used to not only meet TMDLs but is also used in non-TMDL 

situations to protect stream health and help producers improve agricultural production. Common 

examples of conservation practices include removing land from production, prescribed grazing, 

excluding livestock from streams, and planting cover crops (Natural Resources Conservation 

Service [NRCS] n.d.). Incentive programs are commonly used by state and federal conservation 

agencies to encourage voluntary implementation of conservation practices. The most common 

incentive programs on private lands within the United States include the Environmental Quality 

Incentives Program, Conservation Reserve Program, and Conservation Stewardship Program. 

The U.S. Department of Agriculture’s (USDA) NRCS and states’ soil and water conservation 

districts oversee these programs. These programs represent significant public investments in 

managing private lands to maintain the health of streams. For example, the Agriculture 

Improvement Act, Pub. L. No. 115-334 (2018) allocated $29 billion from fiscal years 2019 

through 2023 to fund incentive programs. 

Conservation incentive programs strive to use public funds effectively, but definitions of 

effectiveness — as well as preferences for measuring it — vary widely among interested parties 

(Rissman and Smail 2015; Perez and Cole 2020; NRCS 2024). Effectiveness could be measured 

as economic outcomes because producers are typically interested in maintaining profits (NRCS 
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2024). State and federal agencies often evaluate conservation programmatic effectiveness via 

output measures such as the amount of money spent, number of conservation practices installed, 

and number of producers enrolled (Hurlbert et al. 2023, USDA 2024). However, the goal of 

installing conservation practices is often to improve environmental outcomes (Northey 2020) 

such as addressing TMDLs and improving stream health. Outcome measurements related to 

protecting stream health could include measuring improvements in water quality, habitat, and 

biotic communities. To meet all these goals, agricultural incentive programs may need to balance 

social, ecological, and economic needs (Perez and Cole 2020).  

Although certain conservation practices can benefit soil conditions (e.g., Amorim et al. 

2020) and improve animal health (e.g., Malan et al. 2018) while simultaneously restoring and 

protecting water quality (Liu et al. 2017) and aquatic biota (e.g., Herman et al. 2015), they often 

do not contribute appreciably to overall stream health goals. A review of pollutant measurements 

at the field scale (Liu et al. 2017) showed that in some situations, conservation practices do not 

eliminate pollutants entering streams and may even increase certain pollutants in specific 

situations (e.g., Dinnes 2004; Dodd and Sharpley 2016). At the watershed scale, effectiveness 

can be even harder to gauge, as evidenced by widespread lack of long-term improvement in 

water quality and biotic conditions within the United States (Stets et al. 2020; USEPA 2023). 

From 1992–2012, at 633 sites across the United States, Stets et al. (2020) found that 

concentrations of total nitrogen were decreasing at only half of the sites and total phosphorus 

was increasing at more than half of the sites; however, total suspended solids were decreasing at 

most sites. Similarly, pollutants entering the Chesapeake Bay watershed have been reduced 

greatly but are still predicted to exceed the TMDL that was set by the USEPA to be reached by 

2025 (Chesapeake Bay Foundation 2024) despite over $15 billion being spent on restoration 
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from 2015–2023, much of which was directed towards incentive programs to deliver 

conservation practices (ChesapeakeProgress 2024).  

Inability to improve stream health may stem from a failure to implement the right 

conservation practices for the landscape, in the right place, at the right time (Rittenburg et al. 

2015), and in high enough densities (Sowa et al. 2016). In the Chesapeake Bay, for example, 

failure to achieve nutrient reduction goals may stem from not implementing enough of the right 

type of conservation practices and long lag times between conservation actions and nutrient 

responses (Chesapeake Bay Program’s Scientific and Technical Advisory Committee 2023). 

There are many biophysical factors (e.g., soil type, landscape slope) that influence conservation 

practice efficacy and should be considered when making decisions regarding what practices to 

install and in what locations (Rittenburg et al. 2015; Capel et al. 2018). Even if conservation 

agencies develop plans for installing conservation practices that account for those ecological 

factors, producers may not be willing to install conservation practices, use them as suggested, or 

maintain them into the future (Nowak et al. 2006; Ribaudo 2015; Kalcic et al. 2015). Therefore, 

to efficiently use conservation incentive program funding by installing the most effective 

conservation practices — individually and collectively — it becomes crucial to couple and apply 

ecological and social knowledge. 

Social-ecological systems (Dunham et al. 2018) and coupled human and natural systems 

(Quinn and Wood 2017) are both frameworks that join ecological and social concepts to 

facilitate studying and managing agricultural lands in ways that protect stream health and benefit 

producers (Bennett et al. 2015). Our goal is to design a social-ecological framework that can be 

applied to improve conservation practice efficacy for protecting stream health. We first broadly 

describe the components of our framework — acknowledging that we are only providing a few 
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key examples of components that can be adapted to fit specific research needs. Then, we use the 

framework to described key components of conservation practice efficacy that can be improved 

using approaches from the natural sciences and the conservation social sciences. Finally, we 

demonstrate properties of conservation practice efficacy that connect social and ecological 

approaches. Our framework is one example of how social-ecological integration can lead to 

innovative solutions to complex environmental problems, such as balancing stream health and 

agricultural production. 

Social-ecological framework 

Our social-ecological framework is hierarchical and describes transcendent properties of 

social-ecological systems (Figure 1). The finest grain of the social-ecological system comprises 

attributes of the agricultural producer and stream. Attributes of streams include water quality, the 

biotic assemblage, associated habitat for biota, and stream connectivity. Producers’ attributes 

include management choices (e.g., grazing density and location, fertilizer application regime), 

demographics, outlook for the future, values, and attitudes. The stream and producer are directly 

influenced by components of coarser grains (region, watershed), which include topography, 

soils, farm management history, hydrology, social networks, state agencies, and community 

organizations. Ultimately, finer-grain components of the social-ecological system are constrained 

by factors at coarser grains including the climate, geology, land-use patterns, national policies, 

federal agencies, market conditions and federal funding. Many of the components of the social-

ecological system that influence conservation practice efficacy have been, and are appropriately, 

characterized through the lens of a single discipline and we outline these components in the 

sections, “Natural sciences” and “Social sciences”, respectively. However, there are properties of 

social-ecological systems that transcend the natural or social sciences including thresholds, 
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heterogeneity, time lags and feedbacks — terms that we fully explore in the section 

“Transcendent properties”. 

Natural sciences 

Interactions among conservation practices, landscape features, and pollutants influence 

conservation practice effectiveness (Figure 2). The landscape controls how water moves 

pollutants and other materials through the environment (i.e., the hydrologic flow path), and 

conservation practices can influence the hydrologic flow path (Rittenburg et al. 2015; Capel et 

al. 2018). Thus, some conservation practices influence stream health via effects on water quality, 

instream habitat, and flow regime (i.e., temporal patterns of discharge), all of which can translate 

into biotic responses. When precipitation hits the landscape, it either accumulates (as snow or 

ice), flows along the surface as runoff, or infiltrates the soil — depending on water temperature, 

soil characteristics, and precipitation intensity. In situations where surface runoff occurs, 

sediment and chemicals that adhere to sediment particles (e.g., phosphorus) are the greatest 

threat to water quality (Capel et al. 2018). Excessive runoff can quickly (in minutes to hours) 

deliver pollutants to the stream (Meals et al. 2010; Hamilton 2012) and produce elevated flows 

that adversely reconfigure streambanks and streambeds. Practices that slow water flow and 

reduce the concentration of pollutants in the water (e.g., riparian buffers, conservation tillage, 

and nutrient management plans) are most effective when surface runoff the predominant 

hydrologic flow path (Rittenburg et al. 2015; Capel et al. 2018).  

Water that infiltrates the soil has minimal direct influence on instream habitat but can 

affect instream water quality. Infiltrating water typically percolates to the groundwater unless it 

is intercepted by impenetrable clay soils, bedrock, soil macropores (often due to karst 

topography), engineering structures (e.g., agricultural drain tiles), which will cause water to 
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move laterally through the soil. Lateral flow can transport pollutants to the stream in days 

(Rittenburg et al. 2015), but it can take centuries for pollutants to enter the stream through the 

groundwater; however, residence time varies greatly depending on the geology and amount of 

dissolved oxygen in the groundwater (Meals et al. 2010; Hamilton 2012). Chemicals that are 

typically dissolved in water (e.g., nitrate) move primarily along these two flow paths (Capel et 

al. 2018). In cases where nutrients move primarily through the groundwater and lateral flow, 

conservation practices such as removing land from production or controlled grazing are needed 

to stop pollutants at their source. In contrast, practices that trap pollutants (e.g., riparian buffers) 

can be counter-productive when pollutants are moving through lateral or groundwater flow paths 

because they increase infiltration, causing more nitrogen to be stored in the groundwater where it 

will slowly enter the stream over the long term (Capel et al. 2018).   

Some common conservation practices, such as fencing livestock out of streams, may 

benefit stream health via pathways not described above. By excluding livestock from streams, 

riparian fencing can allow streambanks to re-stabilize (Grudzinski et al. 2020) in response to less 

trampling and subsequent regrowth of vegetation. As riparian woody vegetation matures, its 

roots further stabilize stream banks, it contributes woody debris (an important habitat 

component) to the stream channel, and it shades the stream, thereby improving the temperature 

regime (Ortiz-Gonzalez 2020). Excluding livestock from streams also eliminates their direct 

inputs of nutrients and bacteria, which degrade water quality and impacts human and livestock 

health.  

Measuring a combination of water quality, habitat, and biotic responses can provide 

insight into the pathways through which conservation practices operate, and ultimately achieve 

(or fail to achieve) desired outcomes; however, few studies have investigated those pathways 
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simultaneously. Efficacy of conservation practices is typically measured as improvements in 

water chemistry (e.g., Tuppad et al. 2010; Pearce and Yates 2017), reflecting legislative 

mandates to reduce pollutant loads (e.g., TMDLs) and the simplicity of measuring water quality 

compared to surveying the biotic community. Measuring water quality is appropriate for streams 

that are not supporting designated uses based on concentrations of a particular pollutant (e.g., 

impaired recreational use due to elevated concentrations of Escherichia coli) but for streams 

listed as impaired for other uses (e.g., impaired aquatic life use), measurement of water 

chemistry alone does not always allow for complete assessment of stream health (Karr 1993; 

Barbour et al. 1999). Ultimately, improvements to stream health also require the biota to recover, 

even though conservation practices are not designed to directly elicit biotic responses. Stream 

habitat must recover first because biota have specific requirements for habitat and flow regime. 

The timing, magnitude, and direction of biotic responses are influenced by an organism’s 

lifespan, mobility, fecundity, and other biological traits (Poff 1997; Frimpong and Angermeier 

2010). Thus, it may take many years for fishes to recover after restorative actions (Thomas et al. 

2015) but only a few years for aquatic insects (Miller et al. 2010).  

Interactions between conservation practices and the hydrologic flow path need to be 

understood in the context of the watershed for conservation practices to be most effective. The 

hydrologic flow path determines locations within the watershed that contribute disproportionate 

amounts of pollutants; these locations are where conservation practices will be most impactful 

(Gburek and Sharpley 1998; Heathwaite et al. 2005). These critical source areas can be identified 

via intensive field studies (Gburek and Sharpley 1998) or watershed models (e.g., Gitau et al. 

2006; Giri et al. 2012). Efficacy of conservation practices is also influenced by their interaction 

on the landscape, which can be complementary (Tomer 2018), contradictory (Rittenburg et al. 
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2015), or provide critical redundancy in case of failure (Crow 2022). Two conservation practices 

could be contradictory if one conservation practice changes the hydrologic flow path (e.g., a 

terrace increases infiltration) and renders a downstream practice ineffective (e.g., a buffer 

designed to intercept surface runoff). In contrast, conservation practices could be complementary 

if they target different forms of a chemical or differentially account for hydrologic flow paths 

that change seasonally (Easton et al. 2008; Rittenburg et al. 2015). Lastly, conservation practices 

need to be implemented in high enough densities within the watershed to achieve stream health 

goals (Sowa et al. 2016). 

Social sciences 

Agricultural producers’ behaviors ultimately determine the effectiveness of conservation 

incentive programs for restoring stream health because installing conservation practices is a 

voluntary behavior (Figure 3). Producers first must decide whether to implement a conservation 

practice (i.e., adoption) or not implement a conservation practice (i.e., non-adoption). Ideally, 

producers would adopt the right type and number of conservation practices and in the locations 

that would achieve greatest conservation practice efficacy based on the hydrologic flow path 

(Figure 2; see section Natural sciences). After a conservation practice is adopted and incentive 

program payments end, a producer must decide how long to continue or not continue to use a 

conservation practice — termed persistence and reversion, respectively (Dayer et al. 2018). The 

collective level of conservation practice persistence on the landscape (i.e., across many farms) 

ranges from 31% (Johnson et al. 1997) to 85% (Jackson-Smith et al. 2010) but is rarely 

quantified (Dayer et al. 2018). The choices made by a producer to adopt a conservation practice 

and persist in using that practice are influenced by factors that operate at multiple spatial grains 

(Dayer et al. 2018; Liu et al. 2018; Prokopy et al. 2019; Epanchin-Niell et al. 2022).  
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At a fine grain, producers’ behaviors are influenced by their characteristics, the 

characteristics of their behavior, their past behavior, and the social structures in which producers 

are embedded. Some of the factors that have been used to predict adoption include producers’ 

motivations (i.e., environmental or financial), attitudes towards the environment and 

conservation practices, previous adoption of other conservation practices, information use, 

awareness of programs or practices, amount of land owned that is vulnerable to pollution, farm 

size, income, and education (Prokopy et al. 2019). State and county conservation agencies and 

producers’ relationships with family and neighbors are social structures that influence 

conservation behaviors (Liu et al. 2018; Epanchin-Niell et al. 2022). Less research has been 

conducted to understand factors that specifically influence persistence, but many of those factors 

overlap with those that influence adoption. Dayer et al. (2018) proposed that persistence is 

influenced by producers’ cognitions (e.g., attitudes towards the environment and conservation 

practices), their motivations, the resources available to them, their social influences, and whether 

the conservation practice promotes behavioral inertia (e.g., formation of habits). This framework 

has been tested in the Great Plains, where persistence was related to both financial and 

environmental motivations, social influence, behavioral inertia, and resources but not cognitions 

(Barnes et al. 2023).  

At the coarsest grain, national policies, economic conditions, federal agencies, and 

biophysical conditions all influence producers’ decisions (Liu et al. 2018; Epanchin-Niell et al. 

2022). National policies, such as the Farm Bill, allocate funding and set the directives for the 

state and federal agencies that interface with producers to deliver funds for implementation of 

conservation practices (Liu et al. 2018; Epanchin-Niell et al. 2022). Economic conditions (e.g., 

federal funding and market forces) influence the funding of agencies and the amount of money 
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available to pay producers to use conservation practices (Liu et al. 2018; Epanchin-Niell et al. 

2022). Biophysical conditions, such as the climate or soil conditions, can also influence behavior 

by making actions more or less feasible (e.g., built structures such as fencing can be destroyed by 

flooding; Liu et al. 2018; Epanchin-Niell et al. 2022). More research is needed to fully 

understand how these coarse-scale factors influence producer behavior (Prokopy et al. 2018). 

The aforementioned factors, the potential consequences of behavior, and a decision-

making process collectively result in producers’ behaviors (Epanchin-Niell et al. 2022). Each 

decision made by a producer has assumed social, environmental, or economic consequences to 

individuals or society (Epanchin-Niell et al. 2022). However, the consequences of a behavior are 

not perfectly known by a producer and are subject to interpretation based on the assumed 

consequences and the many factors influencing behavior, leading to perceived consequences 

(Epanchin-Niell et al. 2022). In fact, Prokopy et al. (2018) found that a producer would be more 

likely to adopt a conservation practice if they expected it to increase production. The perceived 

consequences lead to the actual behaviors of adoption, non-adoption, persistence, or reversion, 

which influence future decisions (Epanchin-Niell et al. 2022).  

Knowledge of the factors that influence producers’ behaviors regarding conservation 

practices can be used to design behavior-change strategies that promote voluntary behavior and 

increase conservation practice efficacy (Dayer et al. 2018; Prokopy et al. 2019; Epanchin-Niell 

et al. 2022). Failure of conservation incentive programs to achieve widespread improvements in 

stream health is often attributed to weak participation in the locations that most need 

conservation practices (Ribaudo 2015; McLellan et al. 2018) — suggesting that incentives alone 

are not enough to facilitate widespread behavior change or that design and delivery of incentives 

requires adjustment. Although finances are often a barrier to pro-environmental behaviors, 
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incentives may fail to achieve long-term behavior change because of other impediments to action 

such as lack of knowledge, inconvenience, confusing program rules, social norms, or 

government distrust. Other behavior-change strategies could be used to overcome these barriers 

and encourage conservation practice adoption and persistence. Targeting messaging and careful 

message framing can improve the effectiveness of education and outreach for encouraging 

adoption of conservation practices (e.g., Metcalf et al. 2019; Reddy et al. 2020). Encouraging 

social norms (i.e., standards shared by groups of people) by having producers display signs 

advertising their conservation actions could encourage greater use of conservation practices 

(Howley and Ocean 2021). Similarly, engaging respected producers in the dissemination of 

knowledge can lead to social learning and greater community buy-in (Rust et al. 2022). Although 

we focus on the ways that the social sciences can be used to encourage voluntary behavior, there 

are many other ways that the social sciences can benefit incentive programs, such as 

understanding producers’ needs and goals and ensuring that conservation practices and 

incentives to install those practices are equitably distributed (Bennett et al. 2022). 

Transcendent properties 

A social-ecological framework leads to an interdisciplinary perspective that is useful for 

understanding the transcendent properties of social-ecological systems and improving 

conservation practice efficacy for protecting stream health (Figure 1). Integrating the various 

fields of social science (e.g., psychology, sociology, economics, education) into conservation 

programs can improve management practices, lead to better project designs, justify conservation 

actions, help achieve desired ecological outcomes, and reach socially equitable solutions 

(Bennett et al. 2017). Similarly, coupling the fields of engineering, ecology, economics, 

hydrology, and sociology can lead to improved stream restoration practices (e.g., Palmer et al. 
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2005; Palmer and Bernhardt 2006; Hawley 2018). Although interdisciplinary research can be 

challenging because funding opportunities are limited, rewards systems favor disciplinary 

research, and knowledge transfer among disciplines is difficult, the knowledge gained from 

interdisciplinary research can significantly improve conservation incentive programs. For 

example, there are properties of social-ecological systems (e.g., time lags, thresholds, social-

ecological heterogeneity, and feedbacks) that transcend disciplinary science and application.  

Time lags are a transcendent property of social-ecological systems because the timeframe 

for ecological recovery often does not match the timeframe of conservation programs. Some 

aspects of ecological recovery, such as geomorphic and biotic responses, can take decades or 

longer (Meals et al. 2010; Hamilton 2012), while typical cost-share contracts can be as short as 

one year for practices such as rotational grazing, but up to 20 years for some structural practices 

(NRCS n.d.). Therefore, it can be important to encourage persistence after cost-share contracts 

end so that practices remain in place long enough to achieve ecological recovery (Dayer et al. 

2018). Additionally, maintained practices are more efficient at reducing nutrient input to streams 

than unmaintained practices (Bracmort et al. 2006; Liu et al. 2017). Interdisciplinary research 

can determine how long practices need to be installed and maintained for stream health to 

recover and how to encourage producers to use their practices long-term.  

There are significant response thresholds along social and ecological gradients that must 

be exceeded before intended changes occur due to conservation practice implementation. For 

example, a threshold can occur when a certain number of producers must install conservation 

practices before practice density is great enough to achieve desired instream effects. These types 

of thresholds are common as illustrated by Figure 4, which shows total nitrogen increasing along 

a gradient of increasing conservation practice implementation until practice density reaches 0.30 
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conservation practices/ha (data derived from Chapter 2) at which point total nitrogen is 

stabilized. Unfortunately, it is often unknown what density of conservation practices is needed to 

achieve stream health goals and how to overcome social hurdles to reach those densities.  

Heterogeneity is another common transcendent property of social-ecological systems. 

Critical source areas of pollutants are scattered across the landscape and may not correspond to 

the locations where producers are willing to adopt conservation practices (Nowak et al. 2006). 

Similarly, stream biota often require multiple habitats to complete their lifecycle (Schlosser and 

Angermeier 1995). These habitats may be spatially separated within watersheds, and thus 

affected by water draining from multiple farms. Interdisciplinary approaches can identify critical 

source areas and farms harboring habitat crucial for biota, then determine how to support or 

encourage producers to voluntarily implement appropriate conservation practices in those areas.  

Feedbacks also occur within social-ecological systems due to many of the 

aforementioned transcendent properties (Epanchin-Niell et al. 2022). One example of a negative 

feedback that might occur is when producers’ perceptions that conservation practices are 

ineffective dissuades them from implementing additional practices or promotes reversion to 

previous farming practices after contracts end. This could occur when stream health responses 

are delayed due to time lags or conservation practices do not meet producers’ expectations for 

other reasons. In contrast, producers perceiving conservation practices as effective can lead to 

positive feedback and more conservation practices being implemented. Positive and negative 

feedback can either increase or inhibit progress by a conservation incentive program toward 

meeting stream health goals; therefore, management agencies can focus on encouraging positive 

feedback. For example, Chapter 3 shows that some producers expect conservation practices to 

have ecological benefits and other producers expected conservation practices to increase 
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agricultural production; therefore, management agencies could promote positive feedback by 

focusing their messaging on how conservation practices are achieving each of those goals. 

Conclusion 

Conservation incentive programs have the potential to strike the desired societal balance 

between agricultural production and stream health. Therefore, billions of dollars have been spent 

to install conservation practices across the United States. Despite significant public investments 

in conservation incentive programs, widespread improvements in stream health have not 

materialized. Part of the failure to achieve stream health goals stems from lack of 

interdisciplinary approaches that account for the transcendent properties of social-ecological 

systems. Future studies could implement a social-ecological framework to understand how 

conservation practices influence stream health, determine the spatial arrangement and density 

that will achieve stream health goals, and how to interface with producers to achieve those goals. 

Our social-ecological framework provides an initial step toward the integrative approach needed 

to cost-effectively balance agricultural production and stream health and provides direction for 

future improvement of conservation practices. 
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Figures 

 

Figure 1. An example of a social-ecological framework that can be used to improve efficacy of 

agricultural conservation practices for protecting stream health. Three hierarchical subsystems 

(solid boxes) are shown for the social-ecological system. Each box includes examples of key 

factors or components that characterize a given subsystem, which are listed under the discipline 

typically used to understand those factors. Lastly, four transcendent properties (dashed boxes) 

are shown that emerge through integration of the social and natural sciences. Image Credit: Sami 

Thomas
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Figure 2. The most effective agricultural conservation practices (examples include nutrient management plans, riparian buffers, and 

drain tiles) consider the hydrologic flow path that is represented by the connections among the rectangles shown in the figure. There 

are two horizontal (surface runoff, subsurface lateral flow) and two vertical (infiltration, percolation) flow paths illustrated in the 

figure. Although the hydrologic flow path is shown moving in one direction, water also can move from the stream back to the 

groundwater and from the groundwater to the soil. Ultimately, conservation practice effectiveness can be measured by the instream 

responses indicated by diamonds.  
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Figure 3. Factors at coarse scales influence agricultural producers’ characteristics and their expectation for conservation practice 

outcomes, which ultimately leads to producer’s behavior. Producers collaborate closely with management agencies to make decisions, 

so behavior-change strategies can be used by agencies to influence a producer’s characteristics and ultimately their behavior, which 

can have implications for stream health.  
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Figure 4. An example of a threshold (denoted by dashed vertical line) where conservation 

practice density needs to reach 0.30 practices/ha in a watershed before total nitrogen in the 

stream draining that watershed is stabilized. Data are derived from Chapter 2. 
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CHAPTER 1: DEVELOPMENT OF A SWAT+ MODEL TO IDENTIFY CRITICAL SOURCE 

AREAS IN PASTURELAND WATERSHEDS WITH KARST TOPOGRAPHY  

Abstract 

The goal of this research was to identify critical source areas (CSAs) of agricultural pollutants, 

so that efficacy of conservation practices might be improved. To our knowledge, no studies have 

applied Soil and Water Assessment Tool+ (SWAT+) to identify CSAs in pasturelands within 

karst regions. A SWAT+ model was built for a 27-year timeframe in southwest Virginia of the 

southern Appalachians — an area with extensive pasturelands and karst topography. The model 

satisfactorily predicted monthly streamflow at eight of twelve U.S. Geological Survey stream 

gages, and streamflow was most affected by the available water capacity and hydraulic 

conductivity of the soil, revealing that water, and associated pollutants, are moving primarily 

through subsurface pathways due to the karst topography of the region. Although indices of 

model fit indicated unsatisfactory sediment estimates at all gages, model-estimated monthly 

sediment loads were within an order of magnitude of measured values at nine of eleven gages — 

indicating that the model was still useful for identifying CSAs of sediment. We identified two 

watersheds that had particularly high predicted sediment yields where additional conservation 

practices would likely be beneficial. Predicted sediment yield was negatively associated with the 

extent of agricultural land cover but positively associated with urban land cover. The model 

unsatisfactorily predicted total nitrogen and total phosphorus. The results of this study provide 

practical recommendations for on-the-ground management of grazing lands to protect water 

quality in karst regions. Specifically, conservation practices that stabilize stream banks (e.g., 

fencing cattle out of streams) would be most effective at reducing sediment loads because 

streambanks are the primary sources of instream sediment. Similarly, conservation practices that 
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stop pollutants at their upland sources (e.g., nutrient management plans) would be most effective 

at reducing instream nitrogen in locations with karst topography. These findings also serve to 

advance the application of SWAT+ by providing recommendations for building a SWAT+ 

model to predict pollutant loads in a karst region with extensive pasturelands. For example, 

increasing the amount of water movement through the soil improved model estimates of 

streamflow. Also, the SWAT+ model appeared to have difficulty predicting sediment sources 

from pasturelands in our study area because the predominant source of sediment may be from the 

streambank (a process not captured in SWAT+) rather than upland fields.  
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Introduction 

Protecting stream health from adverse instream effects of agricultural land use is a major 

challenge across the United States. Indicators of water quality, instream habitat, and aquatic biota 

show that most stream miles (including both larger rivers and smaller streams contra Czuba and 

Allen, 2023) across the United States are in fair or poor condition (U.S. Environmental 

Protection Agency [USEPA], 2023). One of the biggest contributors to poor biophysical 

conditions in streams is agricultural land use (Stets et al., 2020; Schürings et al., 2022), which 

can increase nutrients (Carpenter et al., 1998), change physical habitat (Newcombe & 

MacDonald, 1991; Trimble & Mendel, 1995), and alter the flow regime (Poff et al., 1997; 

Foufoula-Georgiou et al., 2015). Collectively, changes to streams caused by agricultural land use 

can reduce or disrupt the flow of ecosystem services provided by streams, such as clean drinking 

water, climate regulation, and recreation (Zhang et al., 2007; Bennett et al., 2022).  

Agricultural conservation practices are the primary mechanism used in the United States 

to protect streams and associated ecosystem services while allowing food production to continue. 

There are many types of conservation practices, examples of which include livestock exclusion 

fencing, livestock watering facilities, and cover crops (Natural Resources Conservation Service 

[NRCS], n.d.). Although the exact number and costs of implemented conservation practices are 

unknown, the Farm Bill set aside $29 billion for agricultural incentive programs from fiscal 

years 2019 through 2023, which primarily funded the installation of conservation practices 

(Congressional Research Service, 2024). Further, Virginia alone has installed at least 400,000 

conservation practices, totaling over half a billion dollars since 1998 (Virginia Department of 

Conservation and Recreation, 2024). Despite the extensive scope and costs of installing 

conservation practices, water quality and biota have not recovered to the expected extent in many 
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locations (Liu et al., 2017; Stets et al., 2022). Often, conservation practices fail to be fully 

effective because they are not appropriate for the landscape conditions (Rittenburg et al., 2015; 

Capel et al., 2018), the density is too low to mitigate the impact of agricultural land use (Sowa et 

al., 2016), or they are not installed in the locations on the landscape that are contributing the 

greatest amounts of pollutants (Nowak et al., 2006; Ribaudo, 2015). 

Areas on the landscape that contribute the most pollutants are often called critical source 

areas (CSAs; Pionke, 2000; Sharpley et al., 2002; Heathwaite, 2005). Interactions among land 

use, soil type, hydrologic condition, and topographic features create CSAs. For example, farms 

with steep slopes will contribute more nutrients to streams than farms with gentle slopes due to 

greater runoff from the steeply sloping landscape. Targeting conservation practice placement in 

CSAs can achieve greater reduction of nonpoint-source pollution than haphazard placement, 

which can increase conservation practice cost-effectiveness (Diebel et al., 2008; Cho et al., 

2010a; Tuppad et al., 2010). For example, Diebel et al. (2008) found that targeting conservation 

practice placement in CSAs required implementation at half the number of fields compared to 

random placement of conservation practices to detect an effect on phosphorus reduction for most 

of the scenarios they evaluated. Field studies can be used to identify CSAs, but it is cost- and 

time-prohibitive to conduct field studies across large spatiotemporal extents. Instead, watershed 

models can be used to identify CSAs relatively quickly and easily for large areas.  

The Soil and Water Assessment Tool (SWAT) is a watershed model that operates on a 

daily time step to estimate streamflow and pollutant transport and is useful for delineating CSAs 

(Arnold, 1998; Fu et al., 2019; Yuan et al., 2020). SWAT divides a watershed into subbasins, 

which comprise hydrologic response units (HRUs; Figure 1) that have similar slope, land cover, 

and soil characteristics. SWAT estimates pollutant yields for each HRU, and those yields can be 
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summarized to identify CSAs at many spatial scales including HRUs (e.g., Cho et al., 2010b), 

fields (e.g., Daggupati et al., 2011), and subbasins (e.g., Tuppad et al., 2010). Before SWAT can 

be used to identify CSAs, it requires calibration and validation for the study area of interest 

(Abbaspour et al., 2018). Previous studies using SWAT differ markedly in their ability to 

accurately model pollutants due to available data for model building and calibration and 

landscape conditions (Gassman et al., 2007).  

The Soil and Water Assessment Tool+ (SWAT+) was recently released to facilitate 

model maintenance, improve future code modifications, and foster collaborations among 

researchers (Bieger et al., 2017). The updated model allows greater flexibility in how water is 

routed through the environment by dividing subbasins into upland and floodplain landscape units 

(LSUs; Figure 1; Bieger et al., 2017), allowing for a more nuanced understanding of pollutant 

sources from the landscape and consequently CSAs. Because SWAT+ is relatively new, few 

studies have used a SWAT+ model for modeling pollutants (n = 23) compared to SWAT (n = 

2,071; Gassman, 2023), fewer have used it for estimating CSAs (but see Tumsa, 2023 and Wu et 

al., 2023), and no studies have been done in karst watersheds (al Khoury et al., 2023). 

Building a SWAT (or SWAT+) model to identify CSAs is especially important in karst 

environments. Approximately 20% of the United States displays karst topography and 33% of 

the karst area in the United States overlaps with pasturelands (Weary & Doctor, 2014; U.S. 

Geological Survey [USGS], 2019a). Karst environments are susceptible to pollution from 

agricultural land use because of extensive subsurface pathways through which water flows 

(Coxon, 2011; Erb & Maas, 2021). These subsurface pathways have significant implications for 

how pollutants move through the environment and which conservation practices will be most 

effective (Capel et al., 2018). Therefore, it is important to understand pollutant transport in karst 
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environments with pastureland, so that appropriate conservation practices can be implemented. 

To that end, many studies have attempted to use SWAT to model pollutant transport in karst 

environments but with mixed success; however, to our knowledge no studies have applied 

SWAT+ to a karst region (al Khoury et al., 2023) 

The goal of this research was to improve conservation practice efficacy through 

identification of CSAs in southwest Virginia, United States, a karst region where cattle grazing is 

a dominant land use. In southwest Virginia there has been extensive installation of conservation 

practices, the most common of which include prescribed grazing, livestock exclusion fencing, 

and livestock watering facilities (George Wallace, NRCS, 14 February 2022, written 

communication). Despite extensive conservation practice installation, 15% of streams are 

considered impaired in southwest Virginia (Virginia Department of Environmental Quality 

[VDEQ], 2022a) and there have been 27 Total Maximum Daily Loads developed as a result of 

water quality impairments (VDEQ, n.d.). To achieve our goal, our specific objectives were to 1) 

build, calibrate, and validate a SWAT+ model, 2) identify critical source areas in southwest 

Virginia and contrast those locations with conservation practice implementation, and 3) identify 

landscape factors that contribute to CSAs for southwest Virginia. This research serves as an 

advancement of SWAT+ application and can provide agencies with practical recommendations 

for conservation practice installation.  

Material and methods 

Study area 

This study focused on the Clinch, Powell, North Fork Holston, and South Fork Holston 

HUC-8 watersheds of Virginia (CPH; Figures 1 and 2; USGS, 2024). The CPH are the 

headwaters of the Tennessee River and are within the Ridge and Valley ecoregion of the 
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Appalachian Mountains (USEPA, 2013). The Ridge and Valley ecoregion is characterized by 

long mountain ridges and valleys with an elevation that ranges from 300–1,740 m and averages 

609 m (USGS, 2019b). The CPH has a humid subtropical climate (Beck et al., 2018) and has an 

average yearly rainfall of 1,241 mm and average low and high temperatures of 6.3 and 18.3 °C, 

respectively (data from 1995–2021; PRISM Climate Group, 2024). The CPH has a total area of 

8,293 km2 and is approximately 64% forest, 20% pastureland agriculture, and 9% urban area 

(USGS, 2019a). Silty-loam soils are the most common soil type in the CPH (NRCS, 2019). 

Lastly, a little over half of the CPH is karst topography (Weary & Doctor 2014). 

Data sources 

We compiled topography, stream network, land cover, soil, climate, streamflow, and 

water quality data to build a SWAT+ model (Table 1). Topographic data (30-m resolution) were 

obtained from the National Elevation Dataset (NED; USGS, 2019b). Stream network data were 

downloaded from the National Hydrography Dataset Plus Version 2 (USEPA & USGS, 2012) to 

assist with watershed delineation. We used the State Soil Geographic Database (STATSGO) as 

the soil layer in our model (NRCS, 2019) and obtained land-cover data from the 2016 National 

Land Cover Database (USGS, 2019a). Climate data were obtained from the PRISM Climate 

Group (2024) for the centroid of each HUC-12 watershed (n = 88 locations). Streamflow data 

were obtained from the USGS gages in the upper CPH (n = 11; USGS, 2020) and total nitrogen, 

total phosphorus, and total suspended solids data were downloaded from the VDEQ long-term 

water quality monitoring stations (VDEQ, 2022b) to calibrate and validate the SWAT+ model 

(Figure 1; Table 1). All geospatial layers were converted to the coordinate reference system 

NAD 83 UTM zone 17 in meters and clipped to the upper CPH. 
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Building the SWAT+ model 

We used QSWAT+ interface (Dile et al., 2022; version 2.3.5) to delineate the watershed 

and create hydrologic response units (HRUs). First, channels were defined using the NED layer 

with a threshold of 2 km2 (i.e., 2222 cells) needing to drain to a cell to create a channel. The 

stream network was burned into the NED layer to assist with channel creation. Channel 

geometry was calculated based on watershed drainage area using parameters from regional 

models (Bieger et al., 2015), where channel width (m) = 2.79 × drainage area0.42 (km2) and depth 

(m) = 0.23 × drainage area0.29 (km2). Further, we updated slope values for channels that had a 

slope of zero by averaging slope from the upstream and downstream channels (3% of channels). 

Subbasins were created around each channel and subbasins smaller than 25% of the mean 

subbasin area were merged. We then created LSUs by dividing the subbasins into upland and 

floodplain areas using digital elevation model inversion (Dile et al., 2022) with a ridge threshold 

of 2 km2. Finally, the HRUs were defined by dividing the range of the watershed hillslopes into 

five equal classes; adding the soil, land-cover, and LSU maps; and retaining all HRUs. After 

delineating the watershed and defining the HRUs, the data were imported into the SWAT+ editor 

(Tech, 2023; version 2.2.2) where climate data were added, and model parameters were set using 

the default values. Solar radiation, wind speed, and humidity were simulated using the SWAT+ 

weather generator. We then calibrated the SWAT+ model (version 60.5.4) from 2004–2009 with 

a two-year warmup period for streamflow (m3/sec), sediment loads (metric tons), nitrogen loads 

(kg), and phosphorus loads (kg) at daily (per day) and monthly (per month) time steps. After 

calibration was complete, the model was run from 1998–2021 with a three-year warmup period 

and validated from 2010–2021. We used Nash-Sutcliffe efficiency (NSE) to assess the SWAT+ 

model performance; values > 0.50 indicate satisfactory model performance for monthly time 
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steps (Moriasi et al., 2007). Model fit was also evaluated by plotting measured pollutant and 

streamflow values against those estimated by the SWAT+ model and calculating correlation 

coefficients. 

Calibration and validation 

Streamflow — We first calibrated the model for streamflow. We selected 10 variables that 

we hypothesized would significantly influence streamflow predictions (Table 2). The most 

sensitive of those parameters was determined by repeatedly running the model under different 

parameter combinations using the SWAT+ Toolbox (James, 2022; version 1.0.2). The model 

results were assessed at one gage from each HUC-8 watershed within our study area (i.e., 

Powell, Clinch, North Fork Holston, South Fork Holston river watersheds; Table 3). 

Additionally, gages on Beaver Creek and Middle Fork Holston River were included (USGS 

gages 03478400 and 03474000; Table 3). Beaver Creek represents an urban drainage area, 

possibly sensitive to unique parameters, and Middle Fork Holston River is a major tributary not 

within a unique HUC-8 watershed. The SWAT+ model was most sensitive to adjusting soil 

available water capacity (awc) and soil hydraulic conductivity (k). Therefore, we calibrated the 

model against measured streamflow values using the dynamically dimensioned search algorithm 

in the SWAT+ Toolbox to determine the values for awc and k that resulted in the highest NSE 

value. 

Sediment — Next, we calibrated the model for sediment loads. We first converted point 

measurements of total suspended solid concentrations (mg/L) collected by VDEQ (2022) to 

sediment loads (metric tons/day) by multiplying the concentration by the daily discharge and 

converting the units. Then, a linear relationship was developed between streamflow and sediment 

load at each VDEQ monitoring station. Streamflow explained at least 65% of the variation in the 
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sediment loads for each relationship at each station. Therefore, we used the relationships to 

predict daily sediment loads from the daily streamflow data at each monitoring station.  

We first turned off the effects of instream processes within the SWAT+ model by setting 

channel erosion and the channel cover factors to zero, which allowed for calibration of the 

SWAT+ model for landscape processes only. We then assessed the effect of changing the 

Universal Soil Loss Equation (USLE) cover factor and adding a grazing operation to the SWAT+ 

model. The USLE cover factor was changed from 0.005 to 0.5 and the USLE practice factor 

from 1 to 100 (i.e., unrealistically high numbers) to see if those changes influenced predicted 

daily sediment loads. We consulted a local Soil and Water Conservation District to determine the 

following parameters for the grazing operation: grazing occurring all year, default beef fertilizer, 

dry weight of biomass removed by grazing daily = 22.5 kg/ha, dry weight of biomass removed 

by trampling daily = 15 kg/ha, dry weight of manure deposited daily = 5.7 kg/ha, and minimum 

plant biomass for grazing to occur = 500 kg/ha. We expected 55% of the sediment loading to 

streams to be coming from the landscape (Noe et al., 2022); therefore, measured values were 

multiplied by 0.55 and compared to predicted values. With instream processes turned off, the 

SWAT+ model underpredicted monthly sediment loads and changing USLE cover and practice 

factors and adding a grazing operation had little effect on the predictions (Appendix Figure 1). 

We moved on to calibrating the SWAT+ model for instream sediment loads because changing 

additional parameters did not further improve sediment estimates from the landscape. Also, the 

estimate of 55% from Noe et al. (2022) is an approximation for a large region and for streams 

draining only the Chesapeake Bay (i.e., there may be differences among watersheds within the 

CPH) and we had observed that instream processes could compensate for the underprediction 
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from the landscape based on predicted sediment loads for the SWAT+ model (Appendix Figure 

1c). 

To finish calibrating the SWAT+ model for sediment loads, we turned instream processes 

back on and determined which instream parameters (i.e., channel cover factor, channel 

erodibility factor, peak rate adjustment factor for sediment routing, and the exponent and linear 

parameters for calculating channel sediment routing) had the greatest influence on predicted 

sediment loads using the SWAT+ Toolbox (Table 2). Finally, the model was calibrated manually 

for the channel erodibility factor, which was the most sensitive parameter. Manual calibration 

consisted of adjusting channel erodibility incrementally until the value that most improved NSE 

values was achieved. We completed the calibration manually because the SWAT+ Toolbox was 

unable to display very small values for channel erodibility and small values were needed to 

improve sediment load estimates. 

Nitrogen and phosphorus — We attempted to calibrate the SWAT+ model for daily (per 

day) and monthly (per month) nutrient loads. We first converted point measurements of total 

nitrogen (mg/L) and total phosphorus (mg/L) to loads (kg/day) following a similar process as for 

sediment. Then, we developed a linear relationship between streamflow and nitrogen and 

phosphorus loads at each VDEQ monitoring station. Streamflow explained 92% and 45% of the 

variation in nitrogen and phosphorus loads for each relationship at each station. Although some 

of the relationships for phosphorus explained < 50% of the variation, eight of ten relationships 

explained greater than 68%. Therefore, we used the relationships to predict daily nitrogen and 

phosphorus loads at each monitoring station. We assessed the influence of adjusting three 

parameters on the SWAT+ model’s ability to predict daily nitrogen loads: 1) adding the cattle 

grazing operation described for sediment calibration, 2) increasing the initial concentration of 
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nitrate in the aquifer (i.e., capturing effects of legacy nitrate stored in the aquifer), and 3) 

adjusting the ratio of nitrate in the surface runoff versus nitrate that percolates into the soil 

(nitrate percolation coefficient). These parameters were not supported by the SWAT+ Toolbox, 

so we changed the initial concentration in the aquifer to 1,000 mg/L and the nitrate percolation 

coefficient to 1 to assess how unreasonably high values of these parameters affected the model. 

Parameters were not changed for phosphorus because the initial predictions from the calibration 

period were on average close to observed values; the poor NSE values resulted from predictions 

that were inconsistently higher or lower than measured values (Table 3, Figure 8).  

Identifying critical source areas 

We used the results from the SWAT+ model to identify and map CSAs of predicted 

sediment yields (metric tons/ha/year) and then compared CSAs to current conservation practice 

installation. We did not map nitrogen or phosphorus predicted yields because we lacked 

confidence in those results (see results for sediment and nitrogen below). First, we totaled the 

annual predicted sediment yields from each LSU for each HUC-12 watershed. Then, we divided 

the HUC-12 watersheds into low, medium, and high yields with an equal number of watersheds 

in each bin. Finally, we summed the number of conservation practices within each HUC-12 

watershed (database obtained from NRCS). and divided the watersheds into low, medium, and 

high conservation practice counts with an equal number of watersheds in each bin. 

Landscape factors that contribute to critical source areas 

We built a multiple linear regression model to assess the effects of landscape features on 

average annual predicted sediment yields (metric tons/ha/year) from LSUs, which can lead to a 

better understanding of factors influencing CSAs. The response variable was the log-transformed 

average annual sediment yield for each LSU created in SWAT+. We log transformed sediment 
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yield to reduce the effect of outliers. We included landscape position (i.e., floodplain or upland) 

as a categorical predictor variable and suppressed the intercept. We also included proportion 

urban land cover, proportion forest land cover, proportion agricultural land cover, soil hydraulic 

conductivity, soil erodibility, and average LSU slope as continuous predictor variables. 

Continuous predictor variables were scaled and centered to have a mean of zero and standard 

deviation of one. Lastly, we explored all two-way interactions among the predictor variables. 

Interactions with p > 0.10 were considered non-significant and dropped from the final model. We 

used the stats package in the software R (R Core Team, 2023) to build the linear models.  

Results 

Calibration and validation 

Streamflow — After calibration, the SWAT+ model generally predicted streamflow well 

and predictions were above or near the NSE cutoff of 0.50 at monthly timesteps at all gages 

except one (Table 3, Figures 3 and 4). Decreasing the soil’s available water capacity by 0.26 mm 

and increasing the soil hydraulic conductivity by 24.5 mm/hr were most effective in improving 

SWAT+ model performance. The only location where NSE values were much below 0.50 was 

USGS gage 03529500, located in Big Stone Gap, Virginia (Figure 4). At most gages, SWAT+ 

overpredicted streamflow at low measured streamflow but underpredicted streamflow at high 

measured streamflow (Figures 3 and 4). Highly correlated (r > 0.86) log-transformed predicted 

and measured monthly streamflow at all gages also indicated good model fit. 

Sediment — We modeled sediment loads within streams with mixed success, and no 

predictions were associated with NSE values above the 0.50 cutoff for monthly timesteps (Table 

3, Figures 5 and 6). The SWAT+ model initially predicted sediment loads that were several 

orders of magnitude too high (Appendix Figure 1c). When we turned off the instream component 
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of sediment processes, the SWAT+ model underpredicted sediment loads (multiplied by 0.55), 

especially at high-flow events (Appendix Figure 1a). The sensitivity analysis revealed that 

channel erodibility was the parameter that most influenced model output. Therefore, we focused 

on changing the channel erodibility factor and found that setting it to 0.00002 cm3/N-s led to 

model predictions that were within an order of magnitude of the measured values at many gages 

except those in the Clinch River (Figures 5 and 6). Log-transformed predicted sediment load had 

a high correlation with log-transformed observed sediment load at all gages (r > 0.81), and the 

SWAT+ model tended to overestimate low observed values of sediment load and underestimate 

high observed values of sediment load (Figure 5). Although predicted sediment loads were much 

too low in the Clinch River, they were highly correlated with measured loads when values were 

log-transformed (r = 0.85 and 0.81; Figure 6). Overall, we felt the SWAT+ model did an 

adequate job of predicting sediment loads and the results could be used to identify watersheds 

that are CSAs of sediment, while acknowledging that predictions for the Clinch River are 

underestimated.  

Nitrogen and phosphorus — The SWAT+ model did not predict total nitrogen or total 

phosphorus well (Table 3). None of the parameters that we evaluated (i.e., adding cattle grazing, 

increasing the initial concentration of nitrogen in the aquifer, and changing the nitrate percolation 

coefficient) influenced the model output for nitrogen loads. Only results for the validation period 

are shown because we observed only small differences between calibration and validation (Table 

3, Appendix Figure 2). At all gages, the SWAT+ model greatly underpredicted total nitrogen 

loads (kg/month) compared to measured values (Figure 7). Despite the SWAT+ model greatly 

underpredicting nitrogen loads, high correlations among log-transformed predicted and measured 

values at all (r = 0.71) but one gage (r = 0.53) shows that the model has promise to accurately 
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predict nitrogen loads if parameters can be adjusted to increase predicted loads. Although the 

SWAT+ model provided reasonable estimates of total phosphorus loads (kg/month) for the 

calibration period (Figure 8), phosphorus estimates were unacceptably low for the validation 

period (Figure 9). The SWAT+ model tended to underpredict phosphorus loads compared to 

measured values except at higher measured values where phosphorus load was overpredicted 

(Figures 8 and 9). Similar to total nitrogen, log-transformed predicted total phosphorus loads 

were highly correlated with log-transformed observed total phosphorus loads at most gages (r > 

0.76) and moderately correlated at one gage (r = 0.68). 

Identifying critical source areas 

We identified CSAs within the upper CPH where installation of conservation practices 

could lead to the greatest reductions in sediment. Sediment yield (metric tons/ha/year) was 

particularly high in HUC-12 watersheds comprising the Clinch River watershed and a few other 

watersheds in the Powell, South Fork Holston, and North Fork Holston watersheds (Figure 10). 

Of these HUC-12 watersheds, Butcher Fork-South Fork Powell River, Toms Creek-Guest River, 

Big Spring Branch-Clinch River, Swords Creek-Clinch River, Middle Creek-Clinch River, 

Newland Hollow-North Fork Holston River, and Big Laurel Creek-Whitetop Laurel Creek have 

few conservation practices and high sediment yields. 

Landscape factors that contribute to critical source areas 

Our SWAT+ model contained 4,428 LSUs with varying landscape conditions and 

sediment yields. The upland land cover was 20% agriculture, 69% forested, and 6% urban, 

whereas the floodplain land cover was 27% agriculture, 47% forested, and 20% urban. The mean 

slope for upland and floodplain LSUs was 31% and 14%, respectively. Floodplain LSUs had a 

mean hydraulic conductivity of 80.7 ± 26.8 mm/hour, whereas upland LSUs had a mean 
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hydraulic conductivity of 82.9 ± 22.1 mm/hr. The mean soil erodibility for upland and floodplain 

LSUs was 0.33 ± 0.04 metric tons·ha·hour/ha·MJ·mm and 0.32 ± 0.04 metric 

tons·ha·hour/ha·MJ·mm, respectively. The average predicted sediment yields for upland and 

floodplain LSUs were 1.82 metric tons/ha/year and 2.87 metric tons/ha/year, respectively.  

Several landscape features were related to predicted sediment yields (Table 4). We 

dropped the predictor variables slope and proportion forest because they were highly correlated 

(r > 0.6) with several other predictor variables. Surprisingly, the proportion of agricultural land 

cover in a LSU was negatively associated with predicted sediment yield (Figure 11a). In contrast, 

predicted sediment yield was positively associated with increasing urban land cover, and urban 

land cover had a significant interaction with landscape position, with higher upland sediment 

yield for a given level of urban land cover (Figure 11b). As expected, increasing soil erodibility 

increased predicted sediment yields, and the effect of soil erodibility depended on landscape 

position, with lower upland sediment yield for a given value of soil erodibility. Hydraulic 

conductivity negatively affected predicted sediment yields, which may be because greater 

conductivity leads to more water moving through the soil (as opposed to over the soil surface), 

where sediment is captured or stored in the soil profile or groundwater.  

Discussion 

Our results provide novel insights into streamflow and pollutant dynamics for 

pasturelands with karst topography, so that conservation practices can be improved. We discuss 

how our results can be applied to installation of conservation practices specifically within the 

CPH and more broadly in pasturelands with karst topography. Unfortunately, the complexities of 

building watershed models like SWAT+ are rarely published (Fu et al., 2019), thereby limiting 

the capacity of new modelers to learn from previous experiences of others. Therefore, we also 
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discuss challenges we encountered when building, calibrating, and validating our SWAT+ model 

to help advance SWAT+ application in karst regions with cattle grazing.  

We found that several watersheds contributed disproportionate amounts of pollutants to 

streams but had few conservation practices installed, so these watersheds could be the focus of 

future conservation practice placement (Figure 10). In particular, Newland Hollow-North Fork 

Holston River and Big Spring Branch-Clinch River also had high agricultural land use, so these 

watersheds could particularly benefit from agricultural conservation practices. We define CSAs 

at the HUC-12 watershed scale but defining CSAs at finer scales (e.g., stream channels) would 

allow more specific targeting of conservation practice placement and potentially yield greater 

benefits for water quality. Unfortunately, issues building the SWAT+ model precluded us from 

taking this step. In particular, the width of headwater streams was too large, resulting in 

overestimation of sediment concentrations in the headwater streams despite replacing the default 

parameters with regional estimates (Bieger et al., 2015). We recommend that future studies 

identifying CSAs carefully check stream width and depth for streams of all sizes instead of only 

larger streams where gages are typically present and model checks occur.  

Increased predicted sediment yields from SWAT+ were largely driven by increasing 

urban land cover and increased soil erodibility. Increasing urban land cover and soil erodibility 

would be expected to increase sediment yields, but we would also expect agricultural land cover 

to increase sediment yields. Instead, we observed a negative relationship between agricultural 

land cover that included a grazing operation and sediment yield from the landscape (Figure 11a). 

It is well known that sediment from agricultural land use is a pervasive problem in southwest 

Virginia (VDEQ, 2004; 2009; 2014); therefore, SWAT+ may not be accurately capturing the 

pathways through which cattle grazing influences sediment yields in southwest Virginia. For 
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example, many pastures in southwest Virginia are mostly vegetated, so overland flow may not be 

the primary source of sediment as assumed by the USLE equation (Boomer et al., 2008). Instead, 

many streams in southwest Virginia have eroding banks, which may be the predominant 

sediment source in the region. If the effects of cattle grazing on streambanks were included in 

SWAT+, it may make for a more realistic model and allow for scenario analyses assessing the 

effects of altering grazing operations (e.g., rotational grazing and excluding cattle from riparian 

areas), which was initially a goal of this research.  

Our results provide some insights into how water and pollutants move through karst 

environments when pasturelands are present, which can inform which conservation practices 

might most effectively mitigate CSAs. Increasing awc (i.e., how much water the soil can hold) 

and k (i.e., the rate of water movement through the soil) improved streamflow estimates at most 

gages, except USGS stream gage 03529500 where most of the upstream drainage is not karst 

topography (Figures 1 and 2). These parameters likely increase lateral flow through the soil, 

which could be an important contributor to high-flow events in our study because of the karst 

topography in the region (al Khoury et al., 2023). Nitrate is typically associated with water and 

may be moving along with water through lateral flow, so conservation practices that stop 

pollutants at their source are likely to be most effective for reducing nitrate (Rittenburg et al., 

2015; Capel et al., 2018). Examples of conservation practices that stop pollutants at their source 

include removing agricultural land from production and nutrient management plans. In contrast, 

streambanks appear to be the predominant source of sediment, so conservation practices such as 

fencing can reduce streambank trampling by removing cattle from riparian areas (Trimble & 

Mendel, 1995; Grudzinski et al., 2020). Similarly, riparian buffers can stabilize streambanks and 

intercept sediment being lost from the landscape (Sweeney & Newbold, 2014).  
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We encountered challenges delineating the watershed and building HRUs within 

QSWAT+. There are many choices to make when building a watershed within QSWAT+, but 

the influence of these choices is not discussed within the user manuals (e.g., Dile et al., 2022) 

and rarely quantified in the literature. This lack of information is especially true for the SWAT+ 

model because it was developed in 2017 (Bieger et al., 2017) and has had relatively few 

publications compared to SWAT (Gassman, 2023). Streamflow and pollutant estimates within 

SWAT are affected by choices related to channel delineation (Arabi et al., 2006; Kumar & 

Merwade, 2009; Cho et al, 2010b), soil layer (Wang & Melesse, 2006; Bhandari et al., 2018), 

and HRU threshold (Her et al., 2015). We used a threshold of 2 km2 to delineate channels 

because a larger threshold resulted in substantially fewer channels and a smaller threshold did 

not add any major channels. We used the STATSGO soil layer instead of the Soil Survey 

Geographic Database (SSURGO) because SSURGO frequently caused QGIS to crash and 

resulted in SWAT+ run times greater than two days. We decided not to remove HRUs from our 

final model because we felt that more HRUs would be more representative of the watershed and 

would allow for better modeling of conservation practices if desired (Her et al., 2015). However, 

after building our model, we learned that having too many HRUs significantly slows model runs 

and makes calibration more difficult (Jeffery Arnold, USDA Agricultural Research Station, 21 

March 2024, written communication). SWAT+ application would benefit from future studies that 

explore the effect of choice regarding channel delineation, soil layer, HRU grouping, and other 

such decisions on model output. Further, it would be helpful to users if the impacts of these 

choices were discussed within the user guides. 

We also had trouble calibrating the SWAT+ model for sediment. First, increasing the 

USLE cover and practice factors did not influence sediment loads, which suggests that changes 
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made in the SWAT+ editor were not appropriately influencing the model. SWAT+ application 

would benefit from improvements in the SWAT+ editor so that changes to model parameters 

have the desired effect on model estimates. We also had difficulties adjusting channel erodibility, 

so that the value was appropriate for all HUC-8 watersheds within our study area (Figures 5 and 

6), which suggests that sediment estimates could be improved if the SWAT+ model was divided 

into separate models for each of the HUC-8 watersheds in our study area. Future research should 

carefully weigh the pros (e.g., decreased calibration time) and cons (e.g., a single parameter may 

not represent the entire watershed) of modeling large watersheds using a single SWAT+ model. 

The SWAT+ model unsatisfactorily predicted nitrogen in our study area. Our SWAT+ 

model greatly underpredicted total nitrogen loads, which was likely due to the underprediction of 

nitrate. The output from our SWAT+ model was about 60% nitrate and 40% organic nitrogen, 

but values observed in the field are typically closer to 80% nitrate and 20% organic nitrogen 

(VDEQ, 2022). Therefore, we focused on increasing the initial concentration of nitrate in the 

aquifer, changing the nitrate percolation coefficient, and adding a cattle grazing operation — 

none of which improved nitrogen estimates. However, when we increased the amount of manure 

deposited within the grazing operation to completely unrealistic levels, (i.e. 4,000 

kg/cow/ha/day), predictions were closer to measured values. Similarly, Singh et al. (2023) and 

Buhr et al. (2022) found that nitrogen estimates were not sensitive to the nitrate percolation 

coefficient. Factors that nitrogen estimates were sensitive to include the humus mineralization of 

active organic nutrients (Singh et al., 2023) and denitrification exponential rate coefficient (Buhr 

et al., 2022; Singh et al., 2023). The SWAT+ model may not be accurately representing nitrogen 

movement within the karst system, the cattle grazing operation was not accurately simulating 

nitrogen deposition on the landscape, or the SWAT+ model was unable to account for legacy 
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nitrogen, which can be stored in the groundwater for decades (Hamilton, 2012). Extensions 

added to SWAT, such as SWAT-MODFLOW-RT3D (Wei et al., 2019), may help improve 

nitrogen estimates for SWAT+. 

 The SWAT+ model also unsatisfactorily predicted phosphorus. It was unexpected that 

the SWAT+ model reasonably predicted phosphorus for the calibration period but not the 

validation period — especially considering that there were not major differences in sediment 

estimates between the two periods and phosphorus is typically associated with sediment. Legacy 

phosphorus could be accumulating in the streambed and resuspended during high-flow events 

(Wallington et al., 2024). We did not spend much time attempting to improve phosphorus 

estimates because excessive sediment loads are generally more of a concern in our study area, 

but future studies could improve phosphorus estimates by adjusting some of the following 

parameters: phosphorus enrichment ratio for loading with sediment, the phosphorus availability 

index, or the parameters affecting instream phosphorus (e.g., local settling rate for organic 

phosphorus). Alternatively, recent modifications to SWAT+ aim to more accurately capture the 

role of instream processes on phosphorus transport within a watershed (Wallington & Cai, 2023). 

Despite the difficulties we encountered in building a SWAT+ model for predicting 

sediment and nutrient loads, the model showed great potential for understanding transport and 

delivery of pollutants. We were able to identify CSAs of sediment where implementation of 

conservation practices could achieve greater pollutant reduction (Figure 10). Additionally, the 

SWAT+ model revealed that pollutants are delivered to streams in our study area through 

streambank erosion and subsurface pathways. Future studies would benefit from improving how 

SWAT+ models pollutant transport in karst systems (i.e., 20% of the United States), and 

identifying the influence of different parameter choices in building the model.  
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Tables and figures 

Table 1. Data sources compiled to run and calibrate the Soil and Water Assessment Tool+. 

 

 

Data Source Website Accessed 

Topography  National Elevation Dataset  https://apps.nationalmap.gov/viewer/ June 2020 

Stream network National Hydrography Dataset Plus Version 2  https://tinyurl.com/y4st74vh January 2020 

Land cover National Land Cover Database  https://www.mrlc.gov/data April 2019 

Soil State Soil Geographic Database  https://tinyurl.com/yc4r4zdh July 2020 

Climate Parameter-elevation regressions on independent slopes model  https://prism.oregonstate.edu/ August 2020 

Streamflow U.S. Geological Survey current water data for Virginia   https://tinyurl.com/yyew8asr June 2022 

Water quality Virginia Department of Environmental Quality https://tinyurl.com/2p86s7v2 June 2022 
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Table 2. Parameters evaluated for influence on streamflow and sediment load estimates from the Soil and Water Assessment Tool+. 

All parameters were changed relative to values within the provided range. The values for the most influential parameters that resulted 

in the best model performance are also given. “-” indicates that streamflow and sediment loads were not sensitive to the parameter; 

therefore, there was not a value that gave the best model performance.  

Response 

variable 

Parameter Description Range Unit Value 

Streamflow 

epco plant uptake compensation factor -1 to 1 none - 

esco soil evaporation compensation factor -1 to 1 none - 

n Manning’s roughness coefficient -0.35 to 0.1 none - 

k soil saturated hydraulic conductivity  -50 to 50 mm/hr - 

awc soil available water capacity  -0.3 to 0.3 mm H20/mm -0.26 

cn2 curve number -10 to 10 none 24.48 

alpha baseflow alpha factor  -0.05 to 0.15 days - 

flo_min minimum aquifer storage to allow return flow -2 to 2 m - 

revap_co groundwater “revap” coefficient 0 to 0.4 none - 
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revap_min 

threshold depth of water in the shallow aquifer for “revap or 

percolation to the deep aquifer to occur  

0 to 50 m - 

      

Sediment 

load 

cherod channel erodibility 0 to 0.1* cm3/N-s 0.0002 

cov channel cover 0 to 0.1 none - 

adj_pkr_sed peak rate adjustment factor for sediment routing in the main channel 0 to 1 none - 

lin_sed 

linear parameter for calculating the maximum amount of sediment 

that can be re-entrained during channel sediment routing 

0.0001 to 0.01 none - 

spexp 

exponent parameter for calculating sediment re-entrained in channel 

sediment routing 

1 to 1.5 none - 

*Calibration values were changed from 0 to 0.000001  
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Table 3. Nashe-Sutcliffe efficiency values from Soil and Water Assessment Tool+ (SWAT+) model calibration (Cal) and validation 

(Val) for streamflow (m3/sec), sediment loads (metric tons), nitrogen loads (kg), and phosphorus loads (kg) for daily (D; per/day) and 

monthly (M; per/month) timesteps. Streamflow predictions from the SWAT+ model were compared to values measured at 11 U.S. 

Geological Survey gages in the upper Clinch, Powell, North Fork Holston, and South Fork Holston HUC-8 watersheds. Water quality 

predictions from the SWAT+ model were compared to values measured at 10 Virginia Department of Environmental Quality long-

term monitoring stations that were near the gages. There were negligible differences between calibration and validation for nitrogen; 

therefore, results are shown only for calibration.  

  Streamflow  Sediment  Nitrogen  Phosphorus 

  D M  D M  D M  D M 

Gage Station Cal Val Cal Val  Cal Val Cal Val  Val Val  Cal Val Cal Val 

03531500 6BPOW138.91 0.52 0.57 0.50 0.49  0.26 0.13 0.10 -0.03  -0.24 -0.91  -31.34 -199.44 -6.78 -63.57 

03529500 6BPOW179.20 0.41 0.45 0.40 0.34  0.23 0.27 -0.53 0.27  -0.33 -1.21  -7.04 -103.25 -0.44 -33.12 

03527220* - 0.49 0.50 0.64 0.45  - - - -  - -  - - - - 

03524000 6BCLN271.50 0.43 0.59 0.46 0.53  -0.02 -0.03 -0.46 -0.51  -0.26 -1.25  -4.14 -194.57 -0.36 -39.98 

03527000 6BCLN206.70 0.41 0.54 0.48 0.54  -0.07 -0.04 -0.47 -0.31  -0.18 -0.76  -0.07 -102.57 -1.30 -39.54 

03488000 6CNFH085.20 0.48 0.55 0.57 0.58  0.36 0.28 0.41 0.25  -0.28 -1.06  -134.20 -1138.90 -30.32 -399.90 
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03475000 6CMFH013.21 0.39 0.38 0.66 0.76  0.28 0.21 0.37 0.27  -0.50 -1.58  -161.22 -548.15 -15.59 -135.52 

03474000 6CMFH033.40 0.50 0.63 0.63 0.73  0.29 0.32 0.21 0.46  -0.81 -2.40  -182.56 -2355.79 -18.93 -525.72 

03473000 6CSFH075.61 0.55 0.59 0.66 0.63  0.30 0.24 0.39 0.27  -0.25 -1.18  -100.68 -577.05 -22.61 -264.46 

03478400 6CBEV020.86 -2.25 -0.63 0.40 0.80  -0.75 0.21 0.16 0.40  -0.63 -1.30  -260.18 -139.44 -23.37 -27.42 

03471500 6CSFH097.42 0.29 0.48 0.56 0.65  -6.84 -1.22 -16.80 -5.02  -0.34 -1.37  -957.27 -2813.24 -204.11 -1095.52 

*Gage 03527220 lacked an associated Virginia Department of Environmental Quality long-term monitoring station, and any data on 

sediment, nitrogen, or phosphorus. 
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Table 4. Results of a multiple linear regression model used to determine factors that influence 

sediment yield (metric tons/ha/year) for 4,428 landscape units within the Clinch, Powell, North 

Fork Holston, and South Fork Holston HUC-8 watersheds in Virginia, United States. The Soil 

and Water Assessment Tool+ was used to estimate sediment yield. The intercept was suppressed 

so the results for both floodplain and upland landscape units can be easily interpreted. 

Coefficients are scaled and centered to have a mean of zero and standard deviation (SD) of one.  

Coefficient Estimate ± SD p-value 

Hydraulic conductivity (mm/hr) -0.04 ± 0.01 < 0.01 

Agriculture (unitless) -0.01 ± 0.01 0.06 

Floodplain (unitless) 0.81 ± 0.01 < 0.01 

Upland (unitless) 1.11 ± 0.01 < 0.01 

Urban (unitless) 0.51 ± 0.01 < 0.01 

Soil erodibility (metric tons·ha·hour/ha·MJ·mm) 0.15 ± 0.01 < 0.01 

Upland X urban 0.25 ± 0.02 < 0.01 

Upland X soil erodibility  -0.04 ± 0.01 < 0.01 
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Figure 1. Illustration of the various spatial scales at which output from the Soil and Water 

Assessement Tool+ (SWAT+) can be summarized to understand critical source areas of 

pollutants. SWAT+ estimates sediment (metric tons/ha), nitrogen (kg/ha), and phosphorus 

(kg/ha) yields from hydrologic response units, which can be summarized at a variety of spatial 

scales including farms and landscape units. Pollutant yields are routed to channels which become 

instream loads. Landscapes units are divided into upland and floodplain units in SWAT+, which 

is an improvement upon SWAT that lumped upland and floodplain units into a single subbasin.  

Data from the U.S. Geological Survey stream gages and Virginia Department of Environmental 

Quality long-term water quality stations (locations coincide with the gages) were used to 

calibrate and validate the SWAT+ model. 
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Figure 2. The Soil and Water Assessment Tool+ (SWAT+) was used to model streamflow, 

sediment, total nitrogen, and total phosphorus within the Clinch, Powell, North Fork Holston, 

and South Fork Holston HUC-8 watersheds in Virginia, United States. In addition to rainfall (not 

shown), soil characteristics (e.g., hydraulic conductivity), land cover, and elevation are important 

inputs to SWAT+ that are used to model streamflow and pollutant transport. The karst 

topography of our study area has a major influence on streamflow, pollutant transport, and 

ultimately, SWAT+ model performance. 
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Figure 3. Streamflow (m3/sec/month) observed at U.S. Geological Survey gage 03475000 (Middle Fork Holston River near 

Meadowview, Virginia, United States) compared to streamflow predicted by the Soil and Water Assessment Tool+. The Nash-

Sutcliffe efficiency (NSE) for streamflow predictions at this gage was the second best of all gages and indicated good fit (0.76). 

Streamflow predictions were similar for most other gages except for 03529500 (Table 3, Figure 4). 
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Figure 4. Streamflow (m3/sec/month) observed at U.S. Geological Survey gage 03529500 (Powell River at Big Stone Gap, Virginia, 

United States) compared to streamflow predicted by the Soil and Water Assessment Tool+. The Nash-Sutcliffe efficiency (NSE) for 

streamflow predictions at this gage was worse than all other gages and indicated unsatisfactory fit (0.34). Streamflow predictions at all 

other gages had NSE values near or above 0.5, indicating good fit (Table 3, Figure 3). 
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Figure 5. The sediment load (metric tons/month) observed at Virginia Department of Environmental Quality water quality monitoring 

station 6CMFH033.40 located near U.S. Geological Survey gage 03474000 (Middle Fork Holston River at Seven Mile Ford, Virginia, 

United States) compared to the sediment load predicted by the Soil and Water Assessment Tool+. The Nash-Sutcliffe efficiency for 

sediment load predictions at this gage was better than all other gages but indicated unsatisfactory fit (0.46). Sediment load predictions 

were similar at all other gages except those in the Clinch River (Table 3, Figure 6). 
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Figure 6. The sediment load (metric tons/month) observed at Virginia Department of Environmental Quality water quality monitoring 

station 6BCLN271.50 located near U.S. Geological Survey gage 03524000 (Clinch River at Cleveland, Virginia, United States) 

compared to the sediment load predicted by the Soil and Water Assessment Tool+. The Nash-Sutcliffe efficiency for sediment load 

predictions were worse at this gage than all other gages and indicated unsatisfactory fit (-0.51). Sediment predictions extremely 

underestimated measured values at both gages in the Clinch River (Table 3). 
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Figure 7. The total nitrogen load (kg/month) observed at Virginia Department of Environmental Quality water quality monitoring 

station 6BPOW138.91 located near U.S. Geological Survey gage 03531500 (Powell River near Jonesville, Virginia, United States) 

compared to the nitrogen load predicted by the Soil and Water Assessment Tool+. Because measured nitrogen loads were greatly 

underpredicted by the SWAT+ model, the Nash-Sutcliffe efficiency (NSE) indicated unsatisfactory fit for this gage (-0.91) and all 

other gages (Table 3).  
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Figure 8. The total phosphorus load (kg/month) observed at Virginia Department of Environmental Quality water quality monitoring 

station 6BPOW138.91 located near U.S. Geological Survey gage 03531500 (Powell River near Jonesville, Virginia, United States) 

compared to the phosphorus load predicted by the Soil and Water Assessment Tool+ for the calibration period. This Nash-Sutcliffe 

efficiency (NSE) for phosphorus load predictions was the fourth best for this gage and indicated unsatisfactory fit (-6.78). Poor NSE 

values were largely driven by greatly overpredicting phosphorus during a few months and most locations with measured values 

showed similar results to those shown in Figure 8, so we did not change parameters within the model for phosphorus.  
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 Figure 9. The total phosphorus load (kg/month) observed at Virginia Department of Environmental Quality water quality monitoring 

station 6BPOW138.91 located near U.S. Geological Survey gage 03531500 (Powell River near Jonesville, Virginia, United States) 

compared to the phosphorus load predicted by the Soil and Water Assessment Tool (SWAT+) for the validation period. Because the 

SWAT+ model greatly overpredicted phosphorus loads at high measured levels of phosphorus, but underpredicted phosphorus at low 

measured levels, the Nash-Sutcliffe efficiency indicated unsatisfactory fit at this gage (-63.57) and all other gages (Table 3).
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 Figure 10. The mean predicted annual sediment yield (metric tons/ha/year) delivered to the 

streams in each HUC-12 watershed in the Clinch, Powell, North Fork Holston, and South Fork 

Holston HUC-8 watersheds of Virginia, United States. Stars within a watershed indicate that the 

watershed has a high sediment yield but few conservation practices installed. Sediment yields 

were derived from the Soil and Water Assessment Tool+. We categorized HUC-12 watersheds as 

low, medium, or high sediment yield, with an equal number of watersheds in each bin.  
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Figure 11. Relationships between agricultural (p < 0.01) and urban land cover (p < 0.01) and 

sediment yield (metric tons/ha/year) predicted by the Soil and Water Assessment Tool+. There 

was a significant interaction between urban land cover and landscape position (upland = black 

points, floodplain = red points), with higher upland sediment yield for a given level of urban land 

cover. This figure was derived from a multiple linear regression model that developed a 

relationship between sediment yield from 4,428 landscape units (LSUs) and the predictor 

variables soil erodibility, proportion agricultural land cover, proportion urban land cover, 

hydraulic conductivity, and landscape position (Table 4).  
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Appendix 

 
 

Figure 1. The sediment load (metric tons/month) observed at Virginia Department of 

Environmental Quality water quality monitoring station 6BPOW138.91 located near U.S. 

Geological Survey gage 03531500 (Powell River near Jonesville, Virginia, United States) 

compared to the sediment load predicted by the Soil and Water Assessment Tool+. Panels A and 

B show the predicted sediment loads before and after adding a cattle grazing operation with 

instream processes turned off. Panel C shows the predicted sediment loads with instream 

processes turned on. 
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Figure 2. The total nitrogen load (kg/month) observed at Virginia Department of Environmental 

Quality water quality monitoring station 6BPOW138.91 located near U.S. Geological Survey 

gage 03531500 (Powell River near Jonesville, Virginia, United States) compared to the nitrogen 

load predicted by the Soil and Water Assessment Tool+ for the calibration period. Panel A shows 

the nitrogen load before the initial concentration of nitrate in the aquifer was changed to 1,000 

mg/L (an unrealistically high concentration) and panel B shows the nitrogen load after the 

change. The unrealistic increase of nitrate in the aquifer had little effect on nitrogen estimates. 

Adding a cattle grazing operation and changing the ratio of nitrate in the surface runoff versus 

nitrate that percolates into the soil had similar negligible effects on total nitrogen estimates.  
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CHAPTER 2: STREAM HEALTH SHOWS NONLINEAR, INDIRECT RESPONSES TO 

INSTALLATION OF AGRICULTURAL CONSERVATION PRACTICES 

Abstract 

Use of agricultural conservation practices can allow food production to continue while protecting 

stream health. Biotic assemblages are the most comprehensive indicator of stream health, but 

biotic responses do not commonly indicate that agricultural conservation practices improve 

stream health as intended. Our objective was to understand the pathways through which 

installation of conservation practices influences biotic responses in watersheds where pastureland 

is a predominant land use. We collected water quality, instream habitat, and macroinvertebrate 

assemblage data from 31 sites in the upper Tennessee River watershed of southwest Virginia, 

United States. Several statistical methods were used to examine linear and nonlinear 

relationships among water quality, instream habitat, macroinvertebrate assemblage composition, 

land cover, and conservation practice implementation. Our results showed that conservation 

practices increase bank stability. In contrast, conservation practices do not reduce total nitrogen 

or substrate embeddedness but do stabilize total nitrogen around 1.4 mg/L. In turn, the 

macroinvertebrate assemblage displays positive and negative threshold responses to changes in 

water quality and habitat. Therefore, conservation practices have an indirect effect on biotic 

assemblages through changes in water quality and habitat. Overall, current implementation of 

conservation practices in our study area appears unable to improve instream conditions to levels 

that support healthy biotic assemblages. Improving instream conditions further may require 

innovative conservation practices, more targeted placement of practices in critical source areas of 

pollutants, or higher densities of practice implementation.  
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Introduction 

In ecosystems dominated by agricultural land use, food production is often valued more 

than the services provided by streams draining those farms (e.g., water purification), which can 

lead to declines in stream health (Baron et al. 2002, Bennett et al. 2021). Intensifying agricultural 

production can reduce water quality (Carpenter et al. 1998), degrade instream habitat 

(Newcombe and MacDonald 1991, Trimble and Mendel 1995), and harm biota (Schürings et al. 

2022). Collectively, these changes to stream ecosystems have the potential to diminish 

ecosystem services such as clean drinking water, recreational opportunities, and even food 

production — resulting in a decline in human wellbeing (Millennium Ecosystem Assessment 

2005). Streams that lose capacity to support ecosystem services are often considered unhealthy 

(Meyer 1997, Karr 1999).  

Appropriate management choices on agricultural lands can protect stream health (Power 

2010, Kremen and Merelender 2018) but stream health responses to agricultural conservation 

practice installation vary greatly. Agricultural conservation practices (e.g., prescribed grazing, 

riparian fencing) are often installed to increase production while protecting other ecosystem 

services (Natural Resources Conservation Service [NRCS] 2022). Typically, landowners 

volunteer to install conservation practices and state and federal agencies cover part of the 

installation cost through incentive programs. Conservation practices often reduce sediment, 

nitrogen, phosphorus, and bacteria in streams, but efficiencies of practices vary widely due to 

many factors such as practice type and location of installation (Liu et al. 2017, Grudzinski et al. 

2020). Improvements in water quality are important indicators of attaining stream health; 

however, biotic assemblages provide a more integrated assessment of overall stream health (Karr 

1981, Karr 1999, Angermeier and Karr 2019). Biotic metrics sometimes respond positively to 
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conservation practice installation (Wang et al. 2002, Herman et al. 2015, Miltner 2015, Holmes 

et al. 2016, Sowa et al. 2016), but a lack of biotic response is also common (Sovell et al. 2000, 

Nerbonne and Vondracek 2001, Yates et al. 2007, Gabel et al. 2012, Holmes et al. 2016).  

The complex pathways that influence biotic responses in streams may contribute to 

variable effects of conservation practice installation on stream health. At the coarsest scale, 

geology, climate, and land use constrain instream conditions (Poff 1997, Stevenson et al. 1997, 

Yates and Bailey 2006), with land use having the greatest potential influence within a watershed 

(Fig. 1). Instream conditions, such as temperature, streamflow, habitat, and water quality interact 

to directly influence biotic responses (Poff et al. 1997, Stevenson et al. 1997, Maloney and 

Weller 2011). Ultimately, conservation practice installation is expected to reduce or alter the 

impacts of agriculture on instream conditions, and as a result, improve biotic conditions (Fig. 1).  

Determining the pathways that influence biotic responses is complicated by thresholds 

that are common in ecological relationships. Thresholds are points at which small changes in one 

variable are associated with large changes in another variable (Suding and Hobbs 2009). For 

example, Yates et al. (2007) found a wide range of habitat quality and biotic responses when 

conservation practice participation was low but a narrow range when participation was high. 

Nonlinear statistical methods such as logistic regression and boosted regression trees can account 

for thresholds (Elith et al. 2008, Ficetola and Denoël 2009) but threshold regression models (e.g., 

piecewise regression; Fong et al. 2017) and threshold indicator analysis (TITAN; Baker and 

King 2010) can identify specific points along gradients at which thresholds occur. 

It is estimated that 49% of the streams in southern Appalachia are in poor condition with 

agricultural land use as a primary cause (U.S. Environmental Protection Agency [USEPA] 

2023). Streams in this region contain a high diversity of aquatic organisms — many of which are 
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of conservation concern (Elkins et al. 2019), which creates a need to understand and improve 

conservation practice effectiveness for protecting stream health. Therefore, in southern 

Appalachia, we investigated 1) specific relationships among conservation practices, landscape 

conditions, water quality, instream habitat, and stream biota and 2) points at which thresholds 

occur in those relationships to better understand the pathways through which conservation 

practices influence stream health. Ultimately, understanding these complex pathways will help 

agencies and producers make decisions (e.g., what conservation practices to use, where, and 

what density) that will lead to improved efficacy of conservation programs in the region. 

Methods 

Study area 

We focused our research within the Upper Clinch, Powell, North Fork Holston, and 

South Fork Holston HUC-8 watersheds (U.S. Geological Survey 2024) in southwest Virginia, 

United States, which are representative of the Southern Appalachian region (Fig. 2). Streams and 

rivers in these watersheds support several federally listed threatened and endangered freshwater 

mussels and fishes (Virginia Department of Game and Inland Fisheries 2015). In southwest 

Virginia specifically, only 16% of the streams are impaired, with unrestricted cattle access being 

the leading cause of impairment, but many streams have not been assessed (Virginia Department 

of Environmental Quality 2022). Our study area comprises watersheds that represent strong 

gradients of agricultural land use (Appendix Fig. 1), sediment yield (Appendix Fig. 2), and 

conservation practice placement (Appendix Fig. 3) — allowing for a strong statistical design for 

detecting biophysical responses to conservation practices.  
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Site selection 

We selected subbasins within our study area that represented a range of predicted 

sediment yields (tons/ha/year), agricultural land use extent, and conservation practice 

implementation intensity (Fig. 2, Table 1). The Soil and Water Assessment Tool+ (SWAT+) was 

used to define subbasins (n = 1,736) and estimate sediment yields (Mouser et al. 2020). Each 

subbasin was ranked as high, medium, or low for conservation practice count (see Conservation 

practice data below), percentage riparian agricultural land use (i.e., within a buffer that extends 

15 m on each side of the stream), and estimated sediment yield, with an equal number of 

observations in each category for land use and estimated sediment yield. For number of 

conservation practices, all subbasins with no conservation practices were ranked low (n = 719) 

and remaining subbasins were split between medium (n = 507) and high (n = 510). We removed 

subbasins with any the following features: a) low riparian agricultural land use, b) > 2% urban 

land use, c) pour-point segment > 3rd order (Strahler, as defined in SWAT+), d) medium 

conservation practice count or predicted sediment yield, and e) received drainage from the 

Appalachian Plateau (coalfield) ecoregion. Removing these subbasins allowed us to focus on 

subbasins (n = 248) with substantial agricultural land, minimize confounding influences of urban 

land use, coal mining, and stream size, and have large gradients in estimated sediment yield and 

conservation practice implementation.  

From the remaining subbasins, we sampled 31 (1 site near the pour-point in each) that 

represented a gradient of agricultural land use and conservation practice density (Table 1). Sites 

were approximately 100 m in length and representative of the characteristics of the stream 

(Barbour et al. 1999). We focus on subbasin agricultural land use hereafter because it provided 

more interpretable categories for the analysis of variance (ANOVA) described below (Table 1). 
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As part of a pilot study, 15 subbasins within Copper Creek watershed were sampled in autumn 

2019 and spring 2020, for a total of 30 sampling events. Sites at all 31 subbasins were sampled in 

autumn 2020 and 2021 and spring 2021 and 2022, resulting in 124 sampling events at all sites 

and a total of 154 sampling events. 

Conservation practice data 

We obtained a conservation practice database for our study area from NRCS. We 

determined the goal of each practice from the NRCS conservation practice standards (NRCS 

n.d.) and removed practices from the database that were either not focused on agricultural 

management (e.g., wildlife habitat development, NRCS practice code 644) or not aimed at 

sediment or nutrient reduction (e.g., spring development, NRCS practice code 574), and screened 

the database for our focal subbasins, resulting in a total of 48 unique conservation practices that 

have been implemented 1,869 times. The 7 most common practices were prescribed grazing (n = 

528), brush management (n = 314), fencing (n = 224), watering facilities (n = 185), livestock 

pipelines (n = 123), access control (n = 122), and nutrient management (n = 121). Finally, we 

divided the number of conservation practices in each subbasin by the area of the subbasin to 

create the variable conservation practice density (Table 2). 

Landscape variables 

 We collated landscape variables (i.e., hillslope and agricultural extent) that might 

influence stream health (Table 2). We extracted the slope of each subbasin (%) from the SWAT+ 

model. We also calculated the percent agricultural land use within the subbasin containing our 

site by calculating the number of pixels for each NLCD land use category within the subbasin 

(U.S. Geological Survey 2019), summing the number of pixels for hay/pasture and row crop land 

use, dividing this sum by the total number of pixels, and multiplying by 100. We hypothesized 
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that slope and agriculture might account for variation in the aquatic assemblage not explained by 

our other variables. 

Instream data 

We collected water quality data from the 31 sites. During each sampling event, we 

collected 1,000 ml of water for total suspended solid samples (TSS), 250 ml for total nitrogen 

(TN) and total phosphorus (TP) samples, and 100 ml for E. coli bacteria samples. Samples were 

stored on ice and returned to the Water Quality Laboratory at Virginia Tech within 24 hours for 

analysis following the laboratory’s standard protocols. Water quality sampling was not 

conducted in spring 2020 because of laboratory closures due to COVID-19. Values below the 

limit of detection (n = 1 for TSS, n = 2 for TN, n = 25 for TP) were assigned the value for the 

limit of detection. Missing water quality data (n = 15 for each water quality parameter) were 

assigned the mean of all the samples collected. Total phosphorus was highly correlated with TSS 

(r = 0.71); therefore, we focus on TSS hereafter. 

We also collected indicators of instream habitat quality from the 31 sites. Starting spring 

2020, during each sampling event, we selected 100 substrate particles from a riffle and measured 

the entire height of the particle perpendicular to the stream bed and the depth of the embedded 

plane. The depth of the embedded plane was then divided by the entire height to calculate 

proportion embeddedness of each particle. Then we calculated the mean embeddedness of all 

100 particles measured at a site during a collection event to obtain the variable “measured 

embeddedness”. In spring 2022 only, habitat indices were assessed over an entire site, following 

the U.S. Environmental Protection Agency rapid habitat assessment protocol for high-gradient 

streams (Appendix A-1 from Barbour et al. 1999). Bank stability was visually estimated by 

assigning an integer from 0–10 for each bank and then summing the score, where 0 means 100% 
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of the bank has erosional scars and 10 means 0% of the bank has erosional scars. Similarly, 

embeddedness was visually estimated by assigning an integer of 0–20, where 0 means gravel, 

cobble, and boulder particles are 100% surrounded by fine sediment (i.e., silt and sand) and 20 

means gravel, cobble, and boulder particles are 0% surrounded by fine sediment. Initial analyses 

revealed no significant relationships between measured embeddedness and other variables, so we 

focused our analyses on visual embeddedness because the 2 variables are characterizing similar 

stream conditions. 

Biotic indices 

Lastly, we collected benthic macroinvertebrates during each sampling event. We kicked 

substrate from a total of 3 m2 of riffle habitat into a D-frame net that were visually selected to 

represent the best available riffle habitat within our 100-m site (Barbour et al. 1999). 

Macroinvertebrate samples were preserved and stored in 100% ethanol. Individuals were 

subsampled to 200 organisms and identified to genus by an independent contractor that 

maintains Society for Freshwater Science genus-level certification. We summarized 

macroinvertebrate collections in several ways. First, we derived the Virginia Stream Condition 

Index (VSCI), which is a multimetric index that includes the total number taxa; the number of 

Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, percent Ephemeroptera individuals, 

percent Plecoptera plus Trichoptera minus Hydropsychidae individuals, percent Chironomidae 

individuals, and percent individuals in the 2 most dominant taxa (Burton and Gerritsen 2003). 

We also calculated the proportion of individuals collected at each site that were classified as EPT 

taxa, minus the pollution-tolerant family Hydropsychidae (proportion EPT) and we counted the 

number of EPT taxa (EPT taxa) to avoid the potential influence of abundant taxa. We also 

assigned each taxon to a functional-feeding group (i.e., collector-filterer, collector-gather, 
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generalist, macrophyte-piercer, predator, scraper, or shredder) and habit group (i.e., burrower, 

climber, clinger, crawler, diver, generalist, skater, sprawler, or swimmer) based on published 

literature (e.g., Brigham et al. 1982, Barbour et al. 1999) and the professional judgment of 

experienced biologists.  

Statistical analyses  

We used several statistical analyses to understand the effects of conservation practices on 

stream health. First, a combination of linear and non-linear models was used to explore the 

indirect effects of conservation practices on stream health while accounting for threshold 

responses. A path analysis would have been ideal for exploring these relationships (Fan et al. 

2016), but we were unable to build informative models — likely due to non-linear relationships 

among the variables. We further explored the connections between water quality and biota and 

habitat and biota using TITAN (Baker and King 2010), which can account for assemblage-level 

threshold responses. Boosted regression trees were used to explore the relative effects of water 

quality, instream habitat, landscape factors, and conservation practices on aquatic biota while 

accounting for nonlinear relationships. Boosted regression trees are useful for this type of 

investigation because they can handle outliers and account for nonlinear effects (Elith et al. 

2008). Finally, many of the relationships between conservation practice density and water 

quality, habitat, and biota depended on agricultural land use; therefore, sites were grouped into 

agricultural extent and conservation practice density categories and relationships were explored 

using analysis of variance (ANOVA). All analyses were conducted using the statistical software 

R (R Core Team 2023) with a significance level of α = 0.10, when applicable. 

We modeled relationships among water quality, habitat, conservation practice density, 

landscape variables, and biota using simple linear, exponential decay, and quadratic plateau 
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models. We used the latter 2 models to assess potential threshold responses. Because sampling 

multiple times at the same site resulted in non-independence and a random effect could not be 

added to these types of models, we calculated the mean of each variable for each site across 

sampling events (i.e., reducing the data matrix to 31 rows). We calculated the arithmetic mean 

for all variables except E. coli and instead calculated the geometric mean, which is more 

appropriate for left-skewed data due to many values that were at the maximum limit of detection. 

Most variables were either square-root or log10 transformed to approximate a normal 

distribution (Table 2). We visually assessed for outliers using boxplots and by plotting Cook’s 

distance values. The plots revealed potential outliers for TN, TSS and E. coli bacteria but we 

chose not to remove the outliers for TN and TSS because they followed the general pattern and 

removal did not significantly change the model outputs described below. However, the outlier 

for E. coli bacteria did not follow the general pattern and occurred at a site that had consistently 

higher values than other sites (presumably because of constant cattle access), so it was removed. 

Simple linear regression models were built using the lm function from the stats package in R (R 

Core Team 2023). We used the functions asymptotic_ineg and linear.plateau from the AgroReg 

package (Shimizu and Goncalves 2024) to build the exponential decay and quadratic plateau 

models. We used visual inspections of relationships, model coefficient p-values, and indices of 

the proportion variation explained (i.e., R2 and pseudo R2) to determine which model best 

explained the influence of conservation practice density on each variable. None of those models 

adequately explained the relationship between conservation practice density and both 

embeddedness and bank stability, so we used the function chgptm from the package chngpt to 

model a breakpoint regression with two disjunct flat lines to further assess those two 

relationships (Fong et al. 2017).  
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We continued to explore nonlinear relationships between macroinvertebrate assemblage 

composition and each water quality and habitat variable using TITAN (Baker and King 2010). 

We first removed taxa that occurred at < 6 sites. Then we ran TITAN using 500 bootstrapped 

runs. We used TITAN to determine 2 macroinvertebrate assemblage thresholds: a) where 

individual taxa have the largest cumulative negative response to environmental gradients and b) 

where individual taxa have the largest cumulative positive response. The assemblage thresholds 

were based only on “high purity” taxa (i.e., taxa that are consistently assigned the same response 

direction) and “high reliability” taxa (i.e., taxa that are consistently assigned the same threshold 

value).  

We developed boosted regression trees to understand the relative influence of several 

variables on stream health. Our response variables for the models were VSCI, proportion EPT, 

and EPT taxa. Our predictor variables included conservation practice density, the 2 landscape 

variables, the 2 habitat variables, and the 3 water quality variables (Table 2). We checked for 

correlations between pairs of variables, and most were < 0.39. Agriculture was highly correlated 

with TN (r = 0.71) and slope (r = -0.75), so we dropped slope from the models but retained 

agriculture because of its known effect on stream health. The models were being used to explore 

relationships among the variables and not make predictions, so we were not concerned about 

high correlations among variables in the model. We included watershed and season as additional 

predictor variables in the boosted regression trees to account for spatial and temporal non-

independence among sampling events. We set the tree complexity to 2 because we thought that 

2-way interactions would be sufficient to explain our response variables (Elith et al. 2008). We 

also set learning rate to 0.05 and bag fraction to 0.5 because these settings achieved the minimum 

number of 1,000 trees (Elith et al. 2008).  
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Because many of the relationships between conservation practice density and water 

quality, habitat, and biota were not significant and depended on agricultural land use, we further 

explored these relationships using ANOVA. First, we assigned each site to 1 of 5 bins (Table 1): 

high subbasin agricultural land use, low conservation practice density (n = 4); high agriculture, 

high conservation (n = 9); medium agriculture, high conservation (n = 9); medium agriculture, 

low conservation (n = 3); or low agriculture, low conservation (n = 6). We then built ANOVA 

models with the response variables TN, TSS, E. coli, bank stability, embeddedness, VSCI, 

proportion EPT, and EPT taxa and site classification as the treatment. Finally, we tested for 

differences between categories using Tukey’s test.  

Results 

Conservation practice data and landscape variables  

Conservation practice density and landscape conditions were quite variable across sites 

(Table 2). Subbasins within Copper Creek and Laurel Creek tended to have high density of 

conservation practices, whereas subbasins within Tumbling Creek, Big Moccasin, and Cedar 

Creek tended to have low conservation practice density. Six sites were categorized as low 

agriculture within the subbasin (all in Tumbling Creek), 12 sites as medium, and 13 as high. 

Most sites were within subbasins with an average slope < 25% (n = 16) and 1 site was within a 

subbasin with an average slope > 40%.  

Instream data 

Water quality for collection events often exceeded thresholds for biotic impairment. 

Measurements for TN were typically above the USEPA (2000) ambient water quality criteria 

recommendations to protect aquatic life in the Ridge and Valley Ecoregion (0.30 mg/L; n = 123). 

Although standards for E. coli are typically based on a geometric mean for several collections in 
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a 30-day period, 93 single-day collections for E. coli were greater than the USEPA (2021) 

recommended value of 126 colony forming units/100mL (note that the units are slightly 

different). There are not federal recommendations for TSS, but collections were typically < 5 

mg/L (n = 107); 12 collections were > 10 mg/L. Visual estimates of embeddedness indicated that 

most sites (n = 17) were slightly embedded (i.e., score between 11 and 15), but some sites had 

very little (n = 7) or moderate (n = 7) embeddedness (Barbour et al. 1999). We observed stable 

banks at most sites (n = 20), 7 sites with unstable banks, and 4 sites with stable banks (Barbour et 

al. 1999). 

Biotic indices 

Benthic macroinvertebrate diversity and calculated biotic indices generally indicated 

healthy streams (Table 2). We removed 102 taxa from the TITAN analysis because they 

occurred at < 6 sites — resulting in 31,790 individuals from 102 taxa in the final database. The 

most common taxa were Optioservus (n = 5,698), Chironomidae (n = 3,543), and Baetidae (n = 

2,049). Clingers (n = 72) were the most common habit group followed by crawlers (n = 71) and 

burrowers (n = 8), whereas the most common functional-feeding groups were collector-gatherers 

(n = 31), predators (n =24), and scrapers (n = 23). The Virginia Stream Condition Index 

indicated that for most sampling events (n = 112) sites were not impaired (i.e., VSCI > 61), but 

when sampling events were averaged, sites in Big Cedar Creek and Tumbling Creek watersheds 

were impaired (Burton and Gerritsen 2003). At sites identified as impaired, VSCI scores were 

driven by slightly lower than average taxa counts, slightly greater than average percentage of 

Chironomidae and the top 2 dominant taxa, and much lower than average percentages of 

pollutant-tolerant taxa (i.e., those classified as EPT). The variables proportion EPT and EPT taxa 
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followed patterns similar to VSCI and were lower on average in Big Cedar Creek and Tumbling 

Creek watersheds.  

Statistical analyses  

Agricultural land use negatively affected water quality, habitat, and the macroinvertebrate 

assemblage. The simple linear regression models indicated that agricultural land use was 

positively related to TN (p < 0.01, Fig. 3a) and E. coli (p < 0.01) but not TSS (p = 0.41), 

embeddedness (p = 0.74), or bank stability (p = 0.38). Slope was negatively related to agriculture 

(p < 0.01), and conservation practice density was positively related with agriculture (p = 0.08). 

Finally, agriculture was negatively related to proportion EPT (p < 0.01, Fig. 3b), VSCI (p = 

0.09), and number of EPT taxa (p < 0.01).  

Conservation practice density appeared to improve or stabilize several measures of water 

quality and physical habitat above certain density thresholds (Fig. 3). The linear plateau model 

explained the greatest amount of variation (pseudo-R2 = 0.25) in the response of TN to 

conservation practice density, where TN increased until a density of 0.30 conservation 

practices/ha was reached, after which TN was stable around 1.4 mg/L (p = 0.03; Fig. 3c). 

Exponential decay models explained more variation in the relationships between conservation 

practice density and TSS (pseudo-R2 = 0.02; Fig. 3d) and E. coli (pseudo-R2 = 0.07; Fig. 3e) than 

other models, but coefficients for the exponents were not statistically significant (p > 0.10). 

Although we could not calculate R2 for a breakpoint regression, it best explained the relationship 

between conservation practices and bank stability (Fig. 3f). When conservation practice density 

was greater than 0.41 conservation practices/ha, bank stability received an average score of 16.4, 

while lower conservation practice densities were associated with average bank stability scores of 
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12.4 (p < 0.01). None of the models explained the relationship between conservation practices 

and embeddedness. 

The macroinvertebrate assemblage exhibited strong negative and positive threshold 

responses along gradients in water quality and habitat. Importantly, thresholds where the most 

taxa begin to decline or increase (as indicated by TITAN) were typically lower than the 

thresholds at which conservation practices stabilized water quality (Table 3; Figs. 3 and 4–8). 

For example, our regression models indicated that TN was stabilized by conservation practice 

installation at 1.4 mg/L, but TITAN indicated the majority of negative indicator taxa began to 

decline at 0.65 mg/L, whereas the majority of positive indicator taxa increased at 1.07 mg/L. 

Similarly, E. coli and TSS were stabilized around 625 most probable number (MPN)/100ml and 

5 mg/L, respectively, but taxa began to decline at 246 MPN/100ml and 1.07 mg/L, respectively, 

and increase at 245.57 MPN/100ml and 4.72 mg/L, respectively. Because less embeddedness and 

more bank stability are preferred, biotic responses should be interpreted inversely to those 

presented for water quality. Our analysis indicated that conservation practices would stabilize 

banks around a score of 16, but taxa did not begin to increase until bank stability reached 17.5. 

We did not find a threshold for how embeddedness would respond to conservation practice 

installation, but negative indicator taxa began to decline at 13, whereas positive indicator taxa 

began to increase at 12.50. Positive responses to E. coli and embeddedness and negative 

responses to bank stability are difficult to interpret because there were several distinct thresholds 

where multiple taxa displayed the same response, resulting in wide confidence intervals.  

The suite of taxa exhibiting threshold responses varied widely among gradients. More 

taxa exhibited threshold responses to TN and E. coli than to other environmental variables (Table 

3). Even though TSS, embeddedness, and bank stability are all closely linked to fine sediment 
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dynamics, only 2 (Stenelmis, Pleuroceridae) of the 14 taxa negatively affected by fine sediment 

(as represented by these measures) exhibited threshold responses in the same direction to more 

than 1 measure of fine sediment (Figures 5, 7–8). In fact, Seratella and Asellidae showed 

opposite response to bank stability and embeddedness. There were no obvious patterns in 

assemblage response by taxa, functional feeding group, or habit group (Figures 4–8). For 

example, similar numbers of taxa classified as EPT (indicated by E, P, and T, respectively, after 

taxon names in Figures 4–8) responded positively and negatively along water quality gradients. 

It is interesting that genera within the family Elmidae (Microcylloepus, Optioservus, Oulimnius, 

Promoresia, Stenelmis) often showed opposite responses to the same water quality variable 

despite being assigned to the same feeding and habit groups.  

Boosted regression trees revealed that agricultural land use, season, and watershed had 

the greatest influence on the macroinvertebrate assemblage, but conservation practices and TN 

also had strong effects on the macroinvertebrate assemblage (Fig. 9). All three response variables 

(i.e., proportion EPT, EPT taxa, and VSCI) responded similarly to the predictor variables, but 

proportion EPT had stronger relationships, so we only discuss the proportion EPT results. The 

regression tree explained 44.7% of the variation in proportion EPT. The boosted regression trees 

found that agriculture explained the greatest variation in proportion EPT (18.9%) followed by 

season (17.6%), watershed (16.7%), conservation practice density (12.1%), TN (9.0%), E. coli 

(7.9%), TSS (7.6%), bank stability (5.3%), and embeddedness (4.9%). Interestingly, 

conservation practice density had a quadratic relationship with proportion EPT, wherein 

conservation practice density was positively correlated with biotic condition at very low levels of 

conservation practice implementation but negatively correlated at higher levels of 

implementation (Fig. 9).  
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Comparing categories of conservation practice density and agricultural land use 

confirmed that increased conservation practice density improves some metrics of water quality 

and habitat, but those improvements did not translate into changes in the macroinvertebrate 

assemblage (Table 4, Fig. 10). There were significant differences between sites with low 

agriculture and low conservation practice density and sites with high agriculture and low 

conservation practice density for TN (p = 0.02), bank stability (p = 0.08), proportion EPT (p = 

0.01), and EPT taxa (p = 0.02), confirming that agriculture can adversely affect water quality and 

habitat. In many cases, conservation practices seemed to improve instream conditions but often 

not by statistically significant amounts. For example, bank stability was significantly (p = 0.05) 

better at sites with high agriculture and high conservation practice density than at sites with high 

agriculture and no practices. Further, E. coli and TSS tended to be lower at high agriculture sites 

with conservation practices compared to those without, but those relationships were not 

significant. Interestingly, proportion EPT appeared to improve in sites with medium agriculture 

and high conservation practice density compared to those with medium agriculture and low 

conservation practice density (p = 0.03). 

Discussion 

Overall, our results suggest that conservation practice installation has the potential to 

protect some aspects of stream health. The direct relationship between conservation practice 

density and macroinvertebrate assemblage response suggested that higher densities of 

conservation practices were not beneficial for biota (Figs. 9b and 10). However, higher 

conservation practice densities improved, or at least stabilized, some metrics of water quality and 

habitat (Figs. 3 and 10), but not to levels that were below thresholds that caused abrupt shifts in 

the macroinvertebrate assemblage (Figs. 4–8). These results demonstrate the importance of 
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accounting for the complex pathways (including indirect and nonlinear effects) through which 

conservation practices influence stream health to understand and improve conservation practice 

efficacy.   

Pathways through which conservation practices influence stream health 

It is encouraging that conservation practices were associated with greater bank stability, 

as we would expect stable banks to reduce fine sediment loads and substrate embeddedness, 

which would benefit the aquatic assemblage (Newcombe and MacDonald 1991, Kemp et al. 

2011, Hirschler et al. 2024). In fact, we observed that increased numbers of conservation 

practices appeared to reduce variability in TSS; however, TSS stabilized around 5 mg/L (Fig. 

3d), which exceeds the threshold of 1 mg/L where the macroinvertebrate assemblage begins to 

shift in response to increasing TSS (Fig. 5). We also did not observe any relationships between 

conservation practices and embeddedness — increased embeddedness can reduce habitat and 

oxygen, leading to decline in biota (Kemp et al. 2011). Sediment stored in the floodplain or 

stream channel from past streambank degradation that is remobilized during storms (Hamilton 

2012) or sediment loads from upstream land uses may be contributing to TSS levels that limit the 

macroinvertebrate assemblage. 

We also observed that current implementation of conservation practices has not improved 

TN, which may be altering aquatic communities. Our results demonstrate that 

macroinvertebrates begin to respond negatively to TN at 0.65 mg/L (Fig. 4), but all sites (except 

1) with medium or high agricultural land use exceeded that value on average. Further, current 

conservation practice density stabilizes TN around 1.4 mg/L (Fig. 3c). These levels exceed 

regulatory recommendations to protect aquatic life in the Ridge and Valley Ecoregion (0.30 

mg/L; USEPA 2000), values recommended for preventing eutrophication (0.90 mg/L; Dodds and 
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Welch 2000), and the ability of biota to remove nitrate (0.15 mg/L; Mulholland et al. 2008). 

Avoiding eutrophication is especially important because it can impact human health, harm biota, 

reduce recreation opportunities, and ultimately impact downstream water sources (Dodds and 

Welch 2000). It is crucial that conservation practices are effective at reducing TN to avoid 

adverse effects on human and stream health. 

Thresholds 

Our results reveal that stream health often shows a nonlinear response to conservation 

practices — indicating potential statistical considerations and opportunities for future research. 

We observed nonlinear responses for almost all the relationships (Figs. 3–9), which is typical for 

studies evaluating stream health responses to water quality (Kaller and Hartman 2004, Yates et 

al. 2007, Keitzer et al. 2016, Sowa et al. 2016). Therefore, future research would benefit from 

analytical designs and statistical models that account for these nonlinear effects. We were able to 

account for nonlinear effects using boosted regression trees, exponential decay, quadratic 

plateau, breakpoint, and TITAN models, so these are options for future studies. One major 

shortfall of these models was our inability to include random effects, which could account for 

spatial and temporal autocorrelation of sampling locations. Additionally, our research questions 

fit the framework of a path analysis (Fan et al. 2016), but we were unable to build an informative 

model, which may have been due to nonlinear effects. Lastly, controlled field and laboratory 

studies can aid in determining exact thresholds at which biota decline. 

Conservation implications 

We may not have observed a response of TN to conservation practice implementation 

because the response can display a long lag time. The primary component of TN in our study 

area is nitrate, which primarily moves dissolved in water and can remain in the groundwater for 



100 

 

centuries (Hamilton 2012). Therefore, we may not have observed a response of TN to 

conservation practice adoption because it may take more time for TN levels in the stream to 

respond and for that response to translate to aquatic biota (Meals et al. 2010). Groundwater 

tracing studies could determine if elevated TN is due to current or past land use (e.g., Moore et 

al. 2006, Clune and Denver 2012). Knowing the source of elevated TN could help agencies 

weigh options for future conservation practices. For example, if elevated TN is from past land 

use, managers may simply need more time to observe effects of conservation practices.  

If elevated TN is from current land use, then innovative conservation practices or greater 

densities of current practices may be required to reduce TN to levels that no longer limit biota. 

Conservation practices that stop pollutants at their source are typically most effective for 

reducing nitrate concentrations (Rittenburg et al. 2015; Capel et al. 2018). One such option could 

be removing agricultural land from production via programs to aid in land retirement (e.g., 

Conservation Reserve Program, Farm Service Agency 2024). Nutrient management plans are an 

alternative option for reducing pollutants at their source locations, but these plans are already 

quite common in southwest Virginia. Although riparian buffers do not capture nitrate in deep 

groundwater, buffers are useful for reducing nitrogen in shallow groundwater (Sweeney and 

Newbold 2014; Rosa et al. 2017). Riparian buffers are used in southwest Virginia but are less 

common than other practices and many landowners have difficulty maintaining buffers (see 

Chapter 3), so there is capacity to increase use of buffers, especially if greater attention is paid to 

designing and maintaining them.  

Conservation social science studies may be useful for encouraging adoption and 

continued use of conservation practices, especially in critical source areas (CSAs) of pollutants. 

Targeting conservation practice placement in CSAs can improve efficacy of conservation 
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practices for reducing pollutant loads (Heathwaite 2005, Nowak et al. 2006). Adoption of 

conservation practices is voluntary; therefore, in situations where CSAs overlap with landowners 

that are resistant to adoption, conservation social science studies can be used to understand how 

adoption might be encouraged (Prokopy et al. 2019). Similarly, continued use of conservation 

practices after cost-share contracts end (i.e., persistence) can be encouraged so that conservation 

practices are in place long enough to achieve biotic responses (Dayer et al. 2018). Encouraging 

persistence can be especially important for practices such as riparian buffers that are often 

destroyed by wildlife and floods (see Chapter 3) and to reduce pollutants such as nitrate that may 

have long lag times in the groundwater.  

 Our results also indicate that current metrics for assessing stream health might not be 

sufficient to understand the impact of agriculture in headwater streams. In Virginia, VSCI scores 

are used to indicate stream health and identify impaired locations that may require restoration 

efforts (Burton and Gerritsen 2003). Even though our results showed that water quality was at 

levels that could harm the macroinvertebrate assemblage, VSCI indicated that many streams 

were healthy (i.e., scores > 61). These multimetric indices of stream health that are used by many 

states can be biased towards larger streams and aim to identify many different stressors (e.g., 

Burton and Gerritsen 2003). Therefore, to evaluate the efficacy of conservation practice 

programs, it could be beneficial to develop indices that are sensitive to changes in land use. 

Although our methods were not designed to help create indices, our results do indicate some 

potential avenues that can be explored. We did not observe clear responses based on taxonomic, 

functional feeding, or habit groups across varying water quality and habitat metrics (Figs. 4–8), 

so metrics might need to be specific to water quality parameters of interest. Interestingly, our 

study and others found that beetles in the family Elmidae often respond to changes in water 
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quality due to agriculture (Braccia and Voshell 2006, 2007); therefore, incorporating taxa such as 

elmids could aid in identifying sites that are impaired by agricultural land use. 

Conclusion  

 Our study reveals some of the pathways through which conservation practices influence 

stream health, which can provide insight for conservation programs. For example, future 

research could develop innovative conservation practices so that conservation programs improve 

instream conditions for biota. These studies should carefully choose response metrics that are 

sensitive to changes in land use and incorporate nonlinear effects into their design. Further, 

social science should be incorporated into practice design and implementation to ensure that 

practices are socially acceptable and equitable (Bennett et al. 2017, Bennett et al. 2022). 

Therefore, interdisciplinary collaborations involving social scientists, ecologists, and engineers 

will be crucial for improving efficacy of conservation programs for protecting stream health. 
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Figures 

 

Fig. 1. Hypothesized pathways through which agricultural conservation practices influence 

stream health. Agricultural land use influences instream water quality and habitat, both of which 

influence biotic responses. Therefore, agriculture has an indirect effect on biotic responses that is 

mediated by conservation practices. Collectively, water quality, habitat, and biotic responses 

provide a picture of stream health (i.e., a stream’s ability to provide ecosystem services). 

Ecosystem services are indicated with a dashed border, as they were not measured in this study. 

Notably, streamflow constrains biotic responses (Poff 1997), and is influenced by some 

conservation practices (Einheuser et al. 2012); however, we excluded streamflow from our 

framework because the types of conservation practices used in southwest Virginia (e.g., livestock 

exclusion fencing) are not aimed at influencing streamflow. 
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Fig. 2. Map of the Upper Clinch, Powell, North Fork Holston, and South Fork Holston HUC-8 

watersheds in southwest Virginia, United States. Within those watersheds, we sampled sites 

within 31 subbasins that represent a range of agricultural land use extent (%) and conservation 

practice density (#/ha).  
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Fig. 3. Agricultural land use negatively affects water quality and biota but conservation practices 

appear to improve or stabilize water quality and habitat. A simple linear regression model 

showed that agricultural land use increased (a.; p < 0.01) total nitrogen and decreased (b.; p < 

0.01) the proportion of macroinvertebrate individuals collected at a site that were classified as 

Ephemeroptera, Plecoptera, or Trichoptera minus individuals in the family Hydropsychidae 

(EPT). The relationship between conservation practice density and total nitrogen (c.) was best 

explained by a linear plateau model (p = 0.03). The relationships between conservation practice 

density and total suspended solids (d.) and E. coli bacteria (e.) were best explained by 

exponential decay models but those relationships were not significant (p > 0.10). Lastly, the 

relationship between conservation practices and bank stability (f.) was best explained by a 

stepwise breakpoint regression model (p < 0.01). See Table 2 for descriptions of each variable.
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Fig. 4. Threshold responses by the benthic macroinvertebrate assemblage (a.) and individual taxa (b.) to variation in total nitrogen 

(mg/L) as indicated by Threshold Indicator Analysis (see Table 3). Red represents positive responses; blue represents negative 
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responses. For 4a., the top panel shows the estimated changepoints (integrated across all taxa) with 95% confidence intervals, the 

middle panel displays the probability density of changepoints accumulated across 500 bootstrap replicates, and the bottom panel 

displays the magnitude of change across taxa along the nitrogen gradient, where peaks in y-values indicate points along the gradient 

that produce large amounts of change in community structure and correspond with change points in the top panel. For 4b., listed taxa 

are annotated (in order) by their membership in taxonomic, functional feeding, and habit groups. Each taxon-specific plot represents 

the probability density of changepoints accumulated across 500 bootstrap replicates. B = Basommatophora, D = Diptera, DE = 

Decapoda, C = Coleoptera, O = Odonata, E = Ephemeroptera, M =  Megaloptera, P = Plecoptera, T = Trichoptera, TR = Tricladida, A 

= Amphipoda, I = Isopoda; CG = Collector-Gatherer, CF = Collector-filterer, G = Generalist, P = Predator, SC = Scraper, SH = 

Shredder; CR = Crawler, CL = Clinger, B = Burrower, G = Generalist, SP = Sprawler 
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Fig. 5. Threshold responses by the benthic macroinvertebrate assemblage (a.) and individual taxa (b.) to variation in total suspended 

solids (mg/L) as indicated by Threshold Indicator Analysis (see Table 3). Red represents positive responses; blue represents negative 

responses. For 5a., the top panel shows the estimated changepoints (integrated across all taxa) with 95% confidence intervals, the 

middle panel displays the probability density of changepoints accumulated across 500 bootstrap replicates, and the bottom panel 
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displays the magnitude of change across taxa along the nitrogen gradient, where peaks in y-values indicate points along the gradient 

that produce large amounts of change in community structure and correspond with change points in the top panel. For 5b., listed taxa 

are annotated (in order) by their membership in taxonomic, functional feeding, and habit groups. Each taxon-specific plot represents 

the probability density of changepoints accumulated across 500 bootstrap replicates. B = Basommatophora, D = Diptera, DE = 

Decapoda, C = Coleoptera, O = Odonata, E = Ephemeroptera, M =  Megaloptera, P = Plecoptera, T = Trichoptera, TR = Tricladida, A 

= Amphipoda, I = Isopoda; CG = Collector-Gatherer, CF = Collector-filterer, G = Generalist, P = Predator, SC = Scraper, SH = 

Shredder; CR = Crawler, CL = Clinger, B = Burrower, G = Generalist, SP = Sprawler 
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Fig. 6. Threshold responses by the benthic macroinvertebrate assemblage (a.) and individual taxa (b.) to variation in E. coli bacteria 

(most probable number/100ml) as indicated by Threshold Indicator Analysis (see Table 3). Red represents positive responses; blue 

represents negative responses. For 6a., the top panel shows the estimated changepoints (integrated across all taxa) with 95% 

confidence intervals, the middle panel displays the probability density of changepoints accumulated across 500 bootstrap replicates, 
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and the bottom panel displays the magnitude of change across taxa along the nitrogen gradient, where peaks in y-values indicate 

points along the gradient that produce large amounts of change in community structure and correspond with change points in the top 

panel. For 6b., listed taxa are annotated (in order) by their membership in taxonomic, functional feeding, and habit groups. Each 

taxon-specific plot represents the probability density of changepoints accumulated across 500 bootstrap replicates. B = 

Basommatophora, D = Diptera, DE = Decapoda, C = Coleoptera, O = Odonata, E = Ephemeroptera, M =  Megaloptera, P = 

Plecoptera, T = Trichoptera, TR = Tricladida, A = Amphipoda, I = Isopoda; CG = Collector-Gatherer, CF = Collector-filterer, G = 

Generalist, P = Predator, SC = Scraper, SH = Shredder; CR = Crawler, CL = Clinger, B = Burrower, G = Generalist, SP = Sprawler 
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Fig. 7. Threshold responses by the benthic macroinvertebrate assemblage (a.) and individual taxa (b.) to variation in visually estimated 

embeddedness as indicated by Threshold Indicator Analysis (see Table 3). Red represents positive responses; blue represents negative 

responses. For 7a., the top panel shows the estimated changepoints (integrated across all taxa) with 95% confidence intervals, the 

middle panel displays the probability density of changepoints accumulated across 500 bootstrap replicates, and the bottom panel 



124 

 

displays the magnitude of change across taxa along the nitrogen gradient, where peaks in y-values indicate points along the gradient 

that produce large amounts of change in community structure and correspond with change points in the top panel. For 7b., listed taxa 

are annotated (in order) by their membership in taxonomic, functional feeding, and habit groups. Each taxon-specific plot represents 

the probability density of changepoints accumulated across 500 bootstrap replicates. B = Basommatophora, D = Diptera, DE = 

Decapoda, C = Coleoptera, O = Odonata, E = Ephemeroptera, M =  Megaloptera, P = Plecoptera, T = Trichoptera, TR = Tricladida, A 

= Amphipoda, I = Isopoda; CG = Collector-Gatherer, CF = Collector-filterer, G = Generalist, P = Predator, SC = Scraper, SH = 

Shredder; CR = Crawler, CL = Clinger, B = Burrower, G = Generalist, SP = Sprawler 
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Fig. 8. Threshold responses by the benthic macroinvertebrate assemblage (a.) and individual taxa (b.) to variation in bank stability as 

indicated by Threshold Indicator Analysis (see Table 3). Red represents positive responses; blue represents negative responses. For 

8a., the top panel shows the estimated changepoints (integrated across all taxa) with 95% confidence intervals, the middle panel 

displays the probability density of changepoints accumulated across 500 bootstrap replicates, and the bottom panel displays the 
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magnitude of change across taxa along the nitrogen gradient, where peaks in y-values indicate points along the gradient that produce 

large amounts of change in community structure and correspond with change points in the top panel. For 8b., listed taxa are annotated 

(in order) by their membership in taxonomic, functional feeding, and habit groups. Each taxon-specific plot represents the probability 

density of changepoints accumulated across 500 bootstrap replicates. B = Basommatophora, D = Diptera, DE = Decapoda, C = 

Coleoptera, O = Odonata, E = Ephemeroptera, M =  Megaloptera, P = Plecoptera, T = Trichoptera, TR = Tricladida, A = Amphipoda, 

I = Isopoda; CG = Collector-Gatherer, CF = Collector-filterer, G = Generalist, P = Predator, SC = Scraper, SH = Shredder; CR = 

Crawler, CL = Clinger, B = Burrower, G = Generalist, SP = Sprawler
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Fig. 9. The top 4 predictors of the proportion of macroinvertebrate individuals collected at a site 

that were classified as Ephemeroptera, Plecoptera, or Trichoptera minus individuals in the family 

Hydropsychidae, as indicated by boosted regression trees. Each y-axis shows the effect of the 

predictor variable on the response after accounting for other variables. Readers should focus on 

the shape of the plotted relationship and each predictor’s relative influence (shown in 

parentheses on the x-axis legend) rather than the numerical scale of the y-axis. A higher relative 

influence indicates a stronger relationship between the predictor and response variables. The 
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predictor variables’ season and watershed also had strong relative influence (17.6% and 16.7%, 

respectively) but are not shown because they were included in the model to account for non-

independence of sampling events. MPN = most probable number  
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Fig. 10. Results of analysis of variance on categories representing gradients in agricultural land 

use and conservation practice density. Bars represent the mean water quality and habitat for each 

category with 90% confidence intervals. Bars with different letters above them indicate 

statistically significant (p < 0.1) differences in means. No differences were statistically 

significant for E. coli bacteria. EPT = Proportion of individuals collected at each site classified as 

EPT, minus the pollution-tolerant family Hydropsychidae  
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Tables 

Table 1. We chose 31 sites distributed across the Copper Creek, Laurel Creek, Tumbling Creek, 

Big Moccasin Creek, and Big Cedar Creek HUC-10 watersheds in southwest Virginia, United 

States. These sites represent a range of agricultural land use (Ag, %), conservation practice 

density (CP, #/ha), and estimated sediment yields (Sed, tons/ha/year) within the subbasin around 

the site. Subbasins were defined and sediment yields were estimated by the Soil Water 

Assessment Tool+ model described in Mouser et al. (2020). Sites were ranked as low, medium, 

or high amounts of agricultural land and high or low sediment yield and conservation practice 

density within the subbasin surrounding the site. ID = site identification code, Lat = latitude, Lon 

= longitude 

ID HUC10 Lat Lon Ag Rank CP Rank Sed Rank 

TC-UC792 Tumbling Creek 36.802 -82.028 3.8 Low 0.00 Low 0.62 Low 

TC-EF639 Tumbling Creek 36.851 -81.906 10.8 Low 0.03 Low 1.44 Low 

TC-BC868 Tumbling Creek 36.807 -82.015 12.4 Low 0.00 Low 0.01 Low 

TC-RM582 Tumbling Creek 36.868 -81.876 13.9 Low 0.00 Low 0.26 Low 

TC-SH803 Tumbling Creek 36.807 -82.015 14.1 Low 0.00 Low 1.8 Low 

TC-WF1719 Tumbling Creek 36.834 -81.930 16.3 Low 0.00 Low 17.41 High 

BM-SF836 Big Moccasin 36.798 -82.154 20.8 Med 0.00 Low 1.31 Low 

BC-WB666 Big Cedar Creek 36.866 -82.115 40.2 Med 0.03 Low 23.76 High 

BM-NF734 Big Moccasin 36.829 -82.146 40.9 Med 0.15 Low 16.65 High 

CC-AB29 Copper Creek 36.766 -82.428 23.1 Med 0.07 High 21.12 High 

LC-CB576 Laurel Creek 36.901 -81.612 28.7 Med 0.08 High 0.21 Low 

LC-W0422 Laurel Creek 36.948 -81.535 31.1 Med 0.16 High 0.63 Low 
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CC-OC56 Copper Creek 36.723 -82.552 31.8 Med 0.66 High 28.01 High 

CC-PB64 Copper Creek 36.716 -82.557 35.4 Med 0.06 High 31.82 High 

CC-UC03 Copper Creek 36.862 -82.199 38.4 Med 0.00 High 19.89 High 

CC-PC67 Copper Creek 36.689 -82.578 38.8 Med 0.01 High 34.14 High 

CC-FB75 Copper Creek 36.670 -82.594 41.1 Med 1.07 High 3.25 Med 

CC-SB58 Copper Creek 36.719 -82.553 43.7 Med 0.42 High 30.98 High 

BC-MB584 Big Cedar Creek 36.895 -82.025 47.4 High 0.00 Low 23.48 High 

BC-LC678 Big Cedar Creek 36.866 -82.115 51.4 Med 0.18 Low 17.86 High 

CC-MC22 Copper Creek 36.784 -82.324 51.7 High 0.44 Low 18.08 High 

BM-NF832 Big Moccasin 36.804 -82.152 70.6 High 0.21 Low 23.44 High 

CC-CC44 Copper Creek 36.747 -82.476 49.1 High 0.07 High 26.4 High 

LC-UC559 Laurel Creek 36.901 -81.622 49.5 High 0.00 High 0 Low 

LC-UC756 Laurel Creek 36.841 -81.765 50.7 High 0.01 High 0.7 Low 

CC-GC24 Copper Creek 36.783 -82.349 50.8 High 0.15 High 21.07 High 

CC-CC05 Copper Creek 36.843 -82.225 53.7 High 0.06 High 26.75 High 

CC-MC14 Copper Creek 36.814 -82.302 55.6 High 0.31 High 39.33 High 

CC-JB25 Copper Creek 36.772 -82.384 56.5 High 0.14 High 27.97 High 

CC-LC16 Copper Creek 36.800 -82.269 64 High 0.00 High 18.95 High 

CC-UC15 Copper Creek 36.800 -82.269 72.5 High 0.09 High 14.48 High 
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Table 2. Description, range, and mean ± standard deviation (SD) of each variable used in the statistical analyses. Some variables were 

collected once for each site and others were collected for each sampling event, which is reflected in the sample size (n). We 

transformed some variables to approximate a normal distribution for all models except the boosted regression trees and threshold 

indicator analysis. E = Ephemeroptera, P = Plecoptera, T = Trichoptera 

Variable Description Range Mean ± SD n Transformation 

Conservation practice 

density (#/ha) 

Number of conservation practices within the subbasin containing 

the site divided by the area of the subbasin 

0–1.10 0.15 ± 0.24 31 Square root 

Slope (%) Average hillslope of the subbasin containing the site 15.92–46.53 25.77 ± 6.48 31 Square root 

Agriculture Percent agricultural land use within the subbasin containing the site 3.8–72.5 38.99 ± 18.05 31 None 

TSS (mg/L)a Concentration of total suspended solids in the water at each site 0.02–44.8 4.20 ± 5.31 139 Log 

TN (mg/L)a Concentration of total nitrogen in the water at each site 0–4.65 1.25 ± 0.77 139 Square Root 

E. coli (most probable 

number/100 ml)a  

Concentration of E. coli bacteria in the water at each site 6.30–2419.20 653.08 ± 799.65 139 Square root 

Embeddedness 

(unitless) 

Visual estimate from 0–20, where 0 indicates coarse substrate 

particles (i.e. gravel, cobble boulder) are 100% surrounded by fine 

sediment and 20 indicates 0% surrounded by fine sediment 

9–18 12.60 ± 2.41 31 None 
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Bank stability 

(unitless)  

Visual estimate from 0–10 for each streambank (summed), where 0 

indicates 100% of the bank has erosional scars and 10 indicates 0% 

of the bank has erosional scars 

4–18 13.79 ± 3.53 31 None 

VSCI (unitless) 

Virginia stream condition index. Multimetric index comprising 

number of EPT taxa, % E individuals, % P plus T minus 

Hydropsychidae individuals, % Chironomidae individuals, and % 

individuals in the 2 most dominant taxa 

34.05–83.63 65.08 ± 9.16 154 None 

Proportion EPT  

(unitless) 

Proportion of individuals collected at each site classified as EPT, 

minus the pollution-tolerant family Hydropsychidae  

0–0.87 0.38 ± 0.20  154 None 

EPT taxa (#) Number of EPT taxa  0–25 12.99 ± 3.79 154 None 

a Water quality data were not collected spring 2020 because of laboratory closures due to COVID-19.
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Table 3. The threshold indicator analysis revealed changepoints (cp), or thresholds, at which the 

majority of the macroinvertebrate taxa responded negatively (-) or positively (+) to selected 

water quality and habitat variables. Each threshold is the value of the variable that had the 

greatest total change in indicator values across individual taxa. Also shown are 95% confidence 

intervals (ci) based on 5th and 95th percentiles from 500 bootstrap replicates and the number of 

pure and reliable taxa (n), out of 102 taxa tested, that responded positively or negatively. See 

Table 2 for descriptions of each variable. 

Variable cp ci n 

TN -  0.65 mg/L 0.57–1.08 17 

TN + 1.07 mg/L 0.81–1.81 11 

TSS - 1.04 mg/L 0.78–3.45 4 

TSS + 4.72 mg/L 4.2–8.93 7 

E. coli - 242.88 mg/L 67.92–283.66 17 

E. coli + 245.57 mg/L 242.88–1790.69 13 

Embeddedness - 13.00 12.00–13.00 2 

Embeddedness + 12.50 12.00–17.50 9 

Bank stability - 6.00 5.00–15.00 5 

Bank stability + 17.50 16.00–18.00 6 
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Table 4. Mean ± standard deviation for water quality, habitat, and biotic variables that were compared among the following categories 

of sites (Table 1): high subbasin agricultural land use, high conservation practice density (HH); high agriculture, low conservation 

(HL); medium agriculture, high conservation (MH); medium agriculture, low conservation (ML); or low agriculture, low conservation 

(LL). See Table 2 for descriptions of each variable.  

Category TN TSS E. coli 

Bank 

stability Embeddedness VSCI 

Proportion 

EPT  EPT taxa 

HH 1.80 ± 0.79 4.75 ± 3.62 978.58 ± 667.18 15.11 ± 2.20 12.22 ± 2.81 63.89 ± 7.13 0.35 ± 0.11 11.86 ± 3.54 

HL 1.48 ± 0.15 7.4 ± 7.51 1188.86 ± 886.47 9.25 ± 4.11 13.00 ± 1.41 63.71 ± 7.06 0.25 ± 0.12 11.95 ± 1.00 

MH 1.19 ± 0.38 2.87 ± 1.43 462.01 ± 471.47 12.77 ± 4.29 12.88 ± 2.36 65.75 ± 6.62 0.43 ± 0.13 13.12 ± 2.16 

ML 0.89 ± 0.37 4.35 ± 1.14 460.50 ± 179.04 15.00 ± 1.73 11.00 ± 1.00 57.37 ± 4.81 0.20 ± 0.07 9.75 ± 2.38 

LL 0.34 ± 0.21 3.49 ± 3.34 297.85 ± 191.09 15.00 ± 2.96 13.66 ± 3.26 70.70 ± 3.39 0.51 ± 0.08 17.37 ± 1.79 
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Appendix 

 

Fig. 1. Our focal subbasins showed a broad range of riparian agricultural land use. After 

removing subbasins that were influenced by urban land use or mining, drained to streams > 3rd 

order, or did not have agricultural land use within the riparian area, we selected focal subbasins 

(red dots, inset a.) that displayed a range of conservation practice installation intensity for more 

intensive study, which led to a gradient of agricultural land use (Table 1). Subbasins were 

defined by the Soil Water Assessment Tool+ model described in Mouser et al. (2020).  
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Fig. 2. Our focal subbasins show a broad range of sediment yields (metric tons/ha/year). After 

removing subbasins that were influenced by urban land use or mining, drained to streams > 3rd 

order, or did not have agricultural land use within the riparian area, we selected focal subbasins 

(red dots, inset a.) that displayed a range of sediment yields for more intensive study (Table 1). 

Subbasins were defined and sediment yields were estimated by the Soil Water Assessment Tool+ 

model described in Mouser et al. (2020). 
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Fig. 3. Our focal subbasins show a broad range of conservation practice installation intensity. 

After removing subbasins that were influenced by urban land use or mining, drained to streams > 

3rd order, or did not have agricultural land use within the riparian area, we selected focal 

subbasins (red dots, inset a.) that displayed a range of conservation practice installation intensity 

for more intensive study (Table 1). Subbasins were defined by the Soil Water Assessment Tool+ 

model described in Mouser et al. (2020). 
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CHAPTER 3: LANDOWNERS' COGNITIONS AND MOTIVATIONS COUPLED WITH 

PRACTICE DURABILITY INFLUENCE PERSISTENCE IN AGRICULTURAL BEST 

MANAGEMENT PRACTICES 

Abstract 

Agricultural best management practices (BMPs) are installed voluntarily by landowners to 

protect stream health while continuing food production. Cost-share contracts through state and 

federal agencies support BMP installation. Although BMPs show potential to recover stream 

health, recovery has not been as extensive or as quick as expected. One potential way to improve 

efficacy of BMPs is through promoting persistence, or the continued use of BMPs after cost-

share contracts end. The rate of persistence and the factors (e.g., landowner environmental 

attitudes and resources) that influence persistence are often unknown. Therefore, our objective 

was to survey landowners to better understand BMP persistence in southwest Virginia. We 

mailed surveys to 889 landowners. Their responses were analyzed quantitively using logistic 

regression and qualitatively via coding. We found that the rates of persistence for vegetative 

practices, cattle-exclusion fencing, off-stream watering structures, and pasture management were 

74%, 84%, 94%, and 94%, respectively. Results from both the quantitative and qualitative 

analyses indicated that landowner cognitions (i.e., attitudes towards BMPs, the environment, and 

agencies), environmental motivations, and practice durability influence persistence. Our results 

highlight ways that persistence could be encouraged if that is the policy or programmatic goal of 

agencies by: 1) providing targeted messaging focused on landowners’ motivations that 

demonstrates the benefits of persistence, 2) ensuring that responsibility to maintain BMPs is 

transferred during changes in land tenure, and 3) allocating more funding to BMP maintenance.  
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Introduction 

Protecting stream health while increasing agricultural production to feed a growing human 

population is a major global challenge. Stream health is the ability of streams to meet social and 

ecological needs (Meyer 1997). Healthy streams are critical for human well-being (Millennium 

Ecosystem Assessment 2005), especially via links to human health, safety, security, and living 

standards (Angermeier et al. 2021). Agricultural land use threatens stream health through 

nonpoint-source pollution that decreases water quality, degrades instream habitat, and harms 

biota (Allan 2004; USEPA 2023). Agricultural production also fulfills a critical human need and 

production will need to increase by 1.1% per year until 2032 to feed the growing global 

population (OECD/FAO 2023). To protect stream health and continue food production, state 

(e.g., VDCR 2023) and federal agencies (NRCS n.d.) encourage landowners to participate in 

agricultural conservation programs, which are entirely voluntary.  

Agricultural conservation programs typically comprise cost-share agreements between 

agencies and landowners to implement agricultural best management practices (BMPs). 

Agricultural BMPs include management practices (e.g., prescribed grazing and cover crops) and 

structural practices (e.g., cattle-exclusion fencing, riparian buffers, and off-stream watering 

structures). Often, the agency pays most of the BMP cost with the expectation that farmers will 

maintain the BMP for its lifetime, which can range from one year for some management 

practices to upwards of 15 years for some structural practices (NRCS n.d.; VDCR 2023). 

Billions of dollars have been spent on implementing BMPs across the United States — the 2018 

Farm Bill allocated $29 billion from fiscal years 2019 through 2023 for conservation program 

(Congressional Research Service 2019) and nearly $808 million has been spent in Virginia alone 

since 1998 (VDCR 2024). To ensure that money and time are spent wisely and effectively when 
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addressing stream health declines, it is crucial that BMPs achieve stream health goals now and 

into the future. 

Despite increasing participation in agricultural conservation programs and more BMPs on 

the landscape, stream health has not recovered as quickly or extensively as expected (Liu et al. 

2017). For example, nutrient reduction goals set by United States Environmental Protection 

Agency to be reached in 2025 will not be met if nutrient reductions for the Chesapeake Bay 

continue at the current rate (Chesapeake Bay Foundation 2023). Failure to achieve stream health 

goals may reflect insufficient participation in cost-share programs, especially in locations that 

contribute excessive amounts of pollutants (Sowa et al. 2016). Despite not fully achieving 

conservation goals in some contexts, participation in conservation programs is often beneficial 

when BMPs are implemented correctly and can lead to improved water quality (Byers et al. 

2005, Bracmort et al. 2006), instream habitat (Wang et al. 2002), and biotic indices (Herman et 

al. 2015). Therefore, increasing participation could enhance stream health outcomes. Landowner 

participation in cost-share programs includes initial adoption of BMPs, re-enrollment in BMP 

programs (if available), or persistence in using BMPs after the cost-share agreement ends (Dayer 

et al. 2018).  

Although BMP persistence is less studied than adoption, persistence can be equally 

important for improving and maintaining stream health (Jackson-Smith et al. 2010, Dayer et al. 

2018). Persistence is defined as continued participation in conservation behavior after short-term 

financial incentive payments end. Persistence is the opposite of reversion, which is when a 

landowner returns to pre-contract management behavior or fails to maintain a structural practice 

(Dayer et al. 2018). Persistence is crucial because it can take many years for stream health to 

respond as intended to BMP implementation and associated stream restoration efforts (Meals et 
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al. 2010; Reid 2018). Long-term maintenance of BMPs also promotes their effectiveness. For 

example, structural BMPs (e.g., terraces) maintained in good condition doubled the amount of 

sediment removed compared to unmaintained practices (Bracmort et al. 2004, 2006). Lastly, 

persistence is especially important when there are no new landowners who are willing or able to 

install BMPs, so the only option for managers would be to encourage persistence (Dayer et al. 

2018). 

In some cases, promoting persistence can cost less than targeting new landowners, 

especially if persistence does not involve new contracts (Dayer et al. 2018). For example, 

maintained BMPs may have higher benefit-to-cost ratios than unmaintained BMPs (Bracmort et 

al. 2004, 2006). Landowners might be encouraged to continue to apply management BMPs or 

maintain structural BMPs without agency funding, or at least for less funding than needed for 

new practices or infrastructure. Yet, maintenance costs could be a challenge for some 

landowners. Some conservation incentive programs have funds for maintenance, but the 

presumed greater conservation benefits associated with new practices are often prioritized over 

funding maintenance of existing BMPs, especially in locations with lower funding allocations. 

Despite the potential importance of persistence in achieving stream health goals and cost-

effective BMP programs, the rate of persistence is unknown in most locations (Dayer et al. 

2018), making it difficult to weigh relative advantages of promoting increased adoption versus 

persistence. 

Many social, ecological, and institutional factors influence a landowner’s decision to 

choose persistence at the conclusion of cost-share funding (Figure 1). Dayer et al. (2018) 

identified five pathways through which we can understand landowner persistence. The first 

pathway, landowner cognitions, includes their attitudes and perceptions towards BMPs, 
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management agencies, and the environment. The second pathway is landowners’ motivations, 

which can be extrinsic (e.g., financial incentives) or intrinsic (e.g., environmental concerns). The 

third pathway involves landowner habits (e.g., grazing cattle in a particular rotation), which can 

become established via implementation of BMPs. Barnes et al. (2023) expanded the terminology 

to behavioral inertia, which includes maintaining the status quo as well as establishing habits. 

The fourth pathway reflects the resources available to landowners such as their finances, the 

information available to them, and the quality of their farmland. Finally, the fifth pathway is a 

landowner’s social influences (e.g., their neighbors’ and community’s attitudes). Although not 

described in Dayer et al. (2018), landowner demographics (e.g., age and level of formal 

education) can predict adoption (Prokopy et al. 2019) and we suspect they may be another 

important predictor of persistence. 

It is also important to recognize the spatial and temporal scales at which factors operate 

to influence conservation behavior (Liu et al. 2018; Epanchin-Niell et al. 2022; Figure 1). Many 

factors that influence behavior — the biophysical setting, the economy, government policies, 

conservation organizations, and social structure (Liu et al. 2018; Epanchin-Niell et al. 2022) — 

operate at coarse scales (i.e., the watershed, state, or country where a landowner resides). For 

example, a watershed that experiences high flooding frequency (i.e., a biophysical factor) may 

have lower landowner persistence for livestock-exclusion fencing practices than a watershed 

with a low flooding frequency due to the risk of fences being destroyed by floods. Factors at the 

watershed scale shape characteristics of the farm (e.g., quality of the land, farm size, and farm 

income) and constrain characteristics of the landowner (e.g., cognitions and resources). The 

characteristics of the landowner will ultimately lead to their decision to persist or revert at the 
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conclusion of their cost-share contract, which will feed into future decisions based on their 

experience (Epanchin-Niell et al. 2022), or by creating behavioral inertia. 

Understanding the factors that influence behavior is important for developing behavior-

change strategies (McKenzie-Mohr 2011). If encouraging persistence is important to achieve 

stream health, then strategies to increase persistence can be developed. For example, Lutter et al. 

(2019) suggested that appealing to a broad array of motivations through advertisement and 

fostering trust could improve long-term management because cognitions (e.g., agency trust) and 

environmental motivations were important predictors of persistence in forest conservation 

practices. Barnes et al. (2020) found that landowners often could not re-enroll in the USDA 

Conservation Reserve Program after their contracts ended and made future land management 

decisions based on the best financial choice; therefore, managers might work with landowners to 

find other conservation programs that meet their financial needs. 

To promote the long-term efficacy of BMP programs, it is important to understand the 

influence of persistence on stream health and how managers might best promote persistence if it 

is beneficial for achieving healthy streams. Therefore, our overall objective was to survey 

landowners to better understand BMP persistence. Specifically, we surveyed landowners to 

determine if they persisted in using BMPs in watersheds of southwest Virginia. Additionally, we 

determined factors that lead landowners to persist in using BMPs. Management agencies can 

leverage factors that influence persistence to effectively engage with landowners and promote 

persistence if warranted. 
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Materials and methods 

Study area 

 We surveyed farmers in Bland, Russell, Scott, Smyth, Tazewell, and Washington 

counties, Virginia, United States (Figure 2) — an area representative of the Appalachian Region 

in terms of land use and demographics, and other small-scale cattle-grazing operations in terms 

of types of BMPs implemented. We focused our surveys on landowners within the Big Moccasin 

Creek (BMC), Big Cedar Creek (BCC), Copper Creek (CC), Laurel Creek (LC), and Tumbling 

Creek (TC) 10-digit hydrologic units (USGS 2024). Several of these watersheds are used 

intensively for hay or pastureland (BMC = 33%, BCC = 36%, and CC = 39%); however, LC and 

TC are only 21% and 18% agricultural use, respectively (USGS 2019). On average, 29% of our 

study area is used for agriculture, which is similar to the average of 28% across the entire 

Appalachian Region (Kerrick et al. 2022). The average farm size for counties in our study area is 

161 acres (USDA 2024), while the average farm size in the Appalachian Region as a whole is 

147 acres (Kerrick et al. 2022). Demographics in our focal counties are similar to rural 

Appalachia as a whole (Pollard and Jacobsen 2020) and show an aging population (i.e., almost 

half are > 50 years old) that is mostly high school-educated or less (> 50% of the population) and 

primarily white (> 91%; USCB 2023). Lastly, each focal watershed has had thousands of BMPs 

implemented from 2005–2021: BCC = 1,406, BMC = 2,425, TC = 2,585, LC = 2,978, and CC = 

5,673 (George Wallace, USDA Natural Resources Conservation Service [NRCS], 14 February 

2022, written communication), providing a useful location to understand persistence in BMP 

programs. 
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Mail surveys  

Our sampling frame comprised landowners in the focal watersheds who have expired 

agricultural BMPs. Contact information for landowners was obtained from tax parcel data and 

Virginia Soil and Water Conservation Districts. To collect data from the tax parcels, BMP data 

were obtained from Virginia Department of Conservation and Recreation (VDCR) and NRCS. 

The BMP data were then restricted to practices that have met their lifespan according to the 

Conservation Practice Data Entry System (NRCS n.d.) and Virginia Agricultural Cost Share 

Manual (VDCR 2023). Next, the BMP data were overlaid on a Virginia tax parcels shapefile 

using QGIS (QGIS Development Team 2023). Because the QGIS shapefile did not contain 

contact data, the interactive Geographic Information System webpage for each county containing 

the focal watersheds was used to pull landowner contact information for each tax parcel. The 

contact information from the tax parcels was supplemented with VDCR contact information for 

all landowners who have agricultural conservation practices in our focal watersheds. The dataset 

from VDCR could not be truncated to contain only landowners with expired contracts because it 

was not georeferenced or related to BMP data. We combined the datasets and removed any 

contacts that had the same first name, middle initial, and last name and were located in the same 

town, resulting in a final mailing list of 889 landowners. 

We mailed surveys to landowners using standard practices (Dillman et al. 2014). Survey 

implementation began with an initial survey invitation sent in May 2022 (Supplementary Files 1 

and 2), a reminder postcard two weeks later (Supplementary File 3), and a final survey to non-

respondents after two more weeks (Supplementary File 4). In March 2023, we mailed a one-page 

follow-up survey to gauge non-response bias (Supplementary Files 5 and 6). The survey 

contained three sections: the first section determined the extent of landowner persistence in using 
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BMPs after cost-share contracts end, the second section determined landowner characteristics 

that may relate to persistence, and the third section asked about landowner demographics.  

Questions for the first section determined if the landowner qualified for the survey and 

asked questions specific to BMPs. The first two questions in the survey were used to filter out 

landowners who did not have BMPs or whose BMPs were still under contract. The initial filter 

questions were followed by questions specific to four categories of BMPs: cattle-exclusion 

fencing, off-stream watering structures, permanent vegetation, and pasture-management 

practices. Questions about each BMP category were preceded by a filter question (hereafter, the 

BMP filter question) to help the landowner decide if they should answer the questions related to 

that category. For all practices except cattle-exclusion fencing, we asked landowners to write in 

the type of BMP that was installed because there are multiple types of off-stream watering 

structure, permanent vegetation, and pasture-management practices. We then asked landowners 

to estimate the year the BMP was installed so we could check if it might still be under contract 

(see Quantitative analysis section below) and to understand the influence of coarse-scale 

variables on BMPs (e.g., differences in funding availability and changes in precipitation among 

years). To understand landowner attitudes towards BMPs, we asked if the practice accomplished 

what they wanted. Persistence in a BMP was determined by asking if landowners used their 

BMP after their government contract ended, where “yes” indicates persistence and “no” indicates 

reversion in a BMP. Lastly, to understand behavioral inertia regarding each BMP type, we asked 

landowners if using their BMP was easier than not using it.  

The second section of the survey determined landowners’ environmental attitudes, 

attitudes towards agencies that engage in BMP programs, motivations, environmental awareness, 

and social influences that may relate to BMP persistence and determined landowners’ preferred 
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mode of communication. To capture landowner environmental attitudes, we asked the extent to 

which they agreed or disagreed with eight statements about their attitudes towards the 

environment using a 5-point Likert scale (modified from Genskow and Prokopy 2011). To 

understand landowner attitudes toward agencies that engage in BMP programs, we then asked 

the extent to which landowners agreed or disagreed with three statements regarding their trust in 

those agencies (modified from Lutter et al. 2019). To understand landowner motivations, we 

asked respondents to indicate the importance (from not at all important to extremely important) 

of three statements each about landowners’ financial and environmental concerns and (modified 

from Lutter et al. 2019). We also asked the extent to which they agreed or disagreed with a 

statement each about injunctive and descriptive norms that gauge the social influences acting on 

a landowner (Fishbein and Ajzen 2010). Lastly, we asked landowners to select their top three 

sources from a predefined list for how they preferred to receive information about soil and water 

conservation issues. 

The third section of the survey asked about landowner demographics. We asked each 

landowner to estimate their farm size and income to understand how the resources available to 

them might influence persistence. We also provided a series of items to determine landowner 

age, education, gender, and race. Finally, we asked for a response to the open-ended question, 

“What would encourage you to use your conservation practices after state or federal contracts 

end?” 

Quantitative analysis 

We used the following criteria to determine if responses would be included in the 

quantitative analysis and determine the response rate. The first two filter questions appeared to 

confuse many landowners because 26 respondents either did not answer those questions or 
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provided a subsequent answer that contradicted the answer they provided. For example, eight 

landowners indicated their BMPs were still under contract, but answered “yes” to the BMP filter 

question (i.e., Did you implement any [insert BMP name] as part of your state or federal contract 

that you are no longer legally required to use?) and provided data about BMPs. Because of these 

discrepancies, we assessed the eligibility of a given survey response using a combination of the 

BMP filter question and the responses to when the BMP was installed. If a landowner answered 

“yes” to the BMP filter question and indicated their structural practices (i.e., cattle-exclusion 

fencing, off-stream watering structures, permanent vegetation) were installed prior to 2018 or 

their pasture management practices were installed prior to 2021, then the respondent’s survey 

responses were included in the quantitative analysis. If both the BMP filter question and the date 

were not answered, then we used the first two filter questions to decide if the survey was eligible. 

Lastly, to reduce pseudoreplication, we removed any responses that came from the same 

landowner, had the same BMP description, and had the same answer to the questions about 

persistence, behavioral inertia, and BMP attitudes.  

We developed indices for the responses to questions that explained a single underlying 

concept. All analyses were completed using the statistical software R (R Core Team 2023). We 

first conducted an exploratory factor analysis (EFA) using the psych package (Revell 2022) to 

determine the validity of averaging the environmental attitudes and motivations survey question 

responses. To conduct the EFA, we visually determined the number of factors to retain in the 

analysis using scree plots and then ran a principal components analysis with a varimax rotation. 

Responses to the environmental attitude survey items were best explained by one factor and 

responses to all but one statement loaded strongly onto that factor. Therefore, an index of 

environmental attitudes was created by averaging the score of the seven statements that loaded 
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strongly. Landowners’ motivations were best explained by two factors; responses to statements 

related to environmental motivations loaded onto the first factor, while responses to financial 

motivations statements loaded onto the second factor. Therefore, an index of environmental 

motivations and an index of financial motivations were created by averaging the responses to the 

statements within each group. Indices of agency attitudes and social influences were created by 

averaging the responses to survey questions related to each concept. We then calculated 

Cronbach’s alpha to gauge internal consistency of the items in the indices related to 

environmental attitudes, environmental motivations, financial motivations, social influences, and 

agency attitudes (Cronbach 1951). Environmental attitudes, environmental motivations, financial 

motivations, social influences, and agency attitudes had alpha values of 0.88, 0.81, 0.64, 0.74, 

0.70, respectively. Because the alpha value for financial motivation was below the recommended 

cutoff of 0.70 (Vaske 2019), we included responses to all three questions as separate variables in 

the analysis described below. 

To determine factors that influence persistence in BMP programs, we developed a 

logistic regression model using the lme4 package (Bates et al. 2015). Our response variable was 

persistence (1) or reversion (0) in using a BMP. If any open-ended responses contradicted the 

indicated BMP status, then we changed the response as indicated (n = 4). For example, one 

respondent marked that an off-stream watering structure was no longer in use but said they 

replaced the original structure, which would actually be a case of persistence. Year since 

installation, BMP attitudes, behavioral inertia, financial motivations (i.e., the variables property 

value, income, and cost share), environmental motivations, environmental attitudes, social 

influences, agency attitudes, farm size (acres), income (dollars), age (years), education, gender, 

and race were selected as predictor variables for our model. All variables that were not highly 
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correlated were included and assessed simultaneously in a single model. Because every 

respondent identified as white (two also identified as Native American), race was not included in 

the analysis due to low variance. The social influences scale was highly correlated with the 

environmental attitudes scale (r = 0.65), so we did not include the social influences scale in the 

final model because we felt that attitudes would be a stronger predictor of behavior. Similarly, 

behavioral inertia was highly correlated with attitudes towards each BMP (r = 0.51), so 

behavioral inertia was excluded from the final model. All continuous variables were scaled and 

centered to improve interpretability of the results. Also, farm size was natural log-transformed to 

approximate a normal distribution. Gender was treated as a categorical variable with the levels, 

“male”, “female”, and “other.” The category “other” was treated as the reference and contained 

responses of “prefer not to say” and non-responses. Lastly, we included landowner as a random 

effect to account for the nested structure of the data (i.e., landowners often install more than one 

BMP). We used α < 0.1 as our cutoff for statistical significance because we were more 

concerned about missing potential predictors of persistence (i.e., Type II error) than incorrectly 

interpreting a variable as significant (i.e., Type I error). Binned residual plots and confusion 

matrices were constructed to assess model performance. 

Qualitative analysis 

We coded the responses to open-ended questions, notes written in the survey margins, 

and data provided via phone conversations to provide greater context for interpreting the 

quantitative results (Table 1). We followed a modified version of the grounded-theory approach 

developed by Glaser and Strauss (1967) and summarized in Williams and Moser (2019). We 

began by creating codes as we read through the data and continued until no new codes emerged. 

We then assigned each code to emergent categories. 
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Results and discussion 

We found that reported persistence of BMPs designed to protect stream health was high 

in southwest Virginia (x̄ = 86% for all practices). Persistence was strongly predicted by attitudes 

towards BMPs and year since implementation, whereas environmental attitudes and 

environmental motivations weakly predicted persistence. Because of high correlation with other 

factors, we were unable to distinguish the roles of social influences and behavioral inertia in 

persistence. Future studies could focus on using different questions or social network analysis 

(Wood et al. 2014) to better understand the role social influences play in persistence. Similarly, 

different wording or placement within the survey may help determine the role of behavioral 

inertia in persistence. We used a relatively simple question (i.e., Is using the practice easier than 

not using it?) immediately after the question about attitudes, which may have influenced the 

responses. Our qualitative results supported the quantitative findings and also revealed that 

durability of BMPs and agency interactions with landowners may influence persistence.  

Our results were based on 84 surveys that were considered eligible for the quantitative 

analysis and 96 responses for the qualitative analysis. Sample sizes for the qualitative and 

quantitative results differed because the quantitative results only contained data that could be 

used to quantify persistence, whereas the qualitative results contained any written or verbal 

responses.  Based on the CASRO estimator, our final response rate for the quantitative analysis 

was 23%. Four surveys were removed because they were sent to the same landowner. Of the 

remaining surveys, we considered 678 to be of unknown eligibility because they were not 

returned. We considered 123 surveys ineligible because they either did not have BMPs, the 

BMPs were still under contract, or insufficient data were provided to determine BMP status. The 

response rate for the non-response survey was only 6% — 631 surveys were not returned, 31 
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were ineligible, and only 13 were eligible. We felt the results of our analyses were valid because 

there were no major differences between the initial survey responses and responses to the non-

response survey (Appendix 1, Table 1). Additionally, we felt our model was adequate based on 

our assessments of fit (Appendix 1, Figure 1, Table 2).  

Our logistic regression model revealed that landowners who felt BMPs accomplished 

what they wanted (i.e., had a positive attitude toward the BMP) were more likely to persist in 

using BMPs after their cost-share contracts ended (p < 0.01, Table 2, Figure 3). Attitudes are 

among the strongest predictors of behavior in general (Ajzen 1991; Stern 2000) and participation 

in agricultural conservation programs specifically (Dayer et al. 2018; Prokopy et al. 2019). 

Surprisingly, we also found a negative relationship between more general environmental 

attitudes and persistence (p = 0.06, Table 2). There could be many explanations for this 

counterintuitive relationship. Perhaps, landowners with strong positive environmental attitudes 

had higher initial expectations of their BMPs and reverted when expectations were not met, or 

those with weaker environmental attitudes persisted because the BMPs were beneficial for their 

farming operation. A simpler explanation may be that we found a spurious relationship based on 

the high p-value (p = 0.06). Similarly, Barnes et al. (2023) found that only a couple measures of 

landowner attitudes were related to persistence in the Conservation Reserve Program. The 

relationship between environmental attitudes and persistence may warrant further exploration in 

future research.  

Landowners’ positive attitudes towards BMPs may be linked to having positive 

experiences with BMP programs; therefore, creating positive experiences may increase 

persistence (Dayer et al. 2018). Landowner motivations for installing BMPs need to be aligned 

with the observed outcomes of the program if landowners are to feel that the program is 
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successful and have a positive experience (Dayer et al. 2018). Environmental motivations were a 

marginally significant predictor of persistence in our logistic regression model (p = 0.09, Table 

2), and more landowners judged BMP success based on observed environmental benefits (n = 

19) than financial benefits (n = 14; Table 1). The following quote exemplifies a landowner who 

is primarily motivated by environmental concerns: “Programs that are very beneficial are self-

perpetuating. Clean water is essential to life in all forms.” In contrast, a landowner who may be 

more driven by financial concerns is illustrated by this quote: “We will maintain what we have 

because it improves the quality of life for our livestock & improves our farm greatly.” Similar to 

environmental attitudes, this relationship could be spurious, suggesting that future studies could 

further investigate the relationship between environmental motivations and persistence. Lutter et 

al. (2019) studied intentions to persist in forest conservation programs and found that 

environmental motivations were also predictors of persistence. In contrast to our results, Lutter et 

al. (2019) also found that financial motivations were significant predictors of persistence. 

Persistence varied by BMP type, which may reflect the durability or quality of the 

different practices. Eleven landowners remarked about the poor quality of some BMPs. 

Vegetative practices, which were typically riparian buffers, had the lowest level of persistence at 

73.6%, and five landowners mentioned that the trees they planted died or were destroyed by 

wildlife. Cattle-exclusion fencing had the next lowest level of persistence (84.2%), followed by 

off-stream watering structures (93.9%) and pasture management (93.9%). Cases of reversion for 

fencing and watering structures were often due to poor construction, as demonstrated by the 

following quote, “The contractor that installed my water system apparently failed to install 

piping correctly. I had many leaks due to joint leaks. At times my water bill/usage was outragess 

[sic]. I was forced to go back to stream watering.”  In some instances, BMP failure did not lead to 
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reversion when landowners had the resources to continue using the practice and felt it was 

important enough. For example, one landowner remarked, “When they [referring to a water 

structure] work there is no reason not to use them. I only replaced my ball tank because it 

became too much trouble to keep them working and they froze sold in the winter. Maybe insist 

on using approved tanks of higher quality. I am still using the tire tank located in the same place 

the ball tanks were.” However, not all landowners have the means to replace BMPs that no 

longer work, as revealed by one landowner: “We would have continued to use the well, but it no 

longer works, and we couldn't afford to have it replaced.” 

The way state and federal agencies interface with landowners can also play a role in 

landowners’ decisions to persist. We hypothesized that agency trust would be a significant 

predictor of persistence because developing trust among stakeholders is an important component 

in achieving environmental sustainability in general (Stern and Coleman 2015) and BMP 

programs specifically (Dayer et al. 2018). Trust was not a significant predictor of persistence (p 

> 0.10); however, our qualitative results support our hypothesis. Landowners discussed the role 

of honesty (n = 2), distrust of government/agencies (n = 8), and the service that they received 

from specific agency personnel (n = 8) in decisions regarding persistence. For example, one 

landowner wrote, “I do not have much confidence in government programs, BUT without this 

program I would not be able to produce 10,000–15,000 lb of beef for consumers. The USDA 

office in Abingdon VA with Bill Moss and Jason Haynes was very helpful and professional.” 

The non-significant quantitative results may simply reflect our low sample size or our question 

wording. For example, instead of focusing our questions on landowner perceptions of specific 

agency personnel, we might have asked landowners how they perceive entire agencies.   
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Lastly, we found that persistence may be influenced by coarse-scale factors. 

Unsurprisingly, persistence was negatively associated with year since installation (Table 2, 

Figure 4), which may reflect that landowners are more likely to revert as practices age. However, 

the relationship between year and persistence may also reflect differences in environmental 

conditions among years (e.g., a large flood), political changes (Liu et al. 2018), or changes in 

agency personnel that landowners trusted (see quote in previous paragraph). Unfortunately, our 

data were too sparse (i.e., not enough responses during each year) to treat year as a categorical 

variable, which would allow us to explore these concepts in more detail. We also found that 

persistence was high compared to reversion for Copper Creek but lower for other watersheds 

(Figure 2). Landowners’ perceptions of environmental issues, agency presence, and/or the 

biophysical setting could differ among the watersheds and influence persistence (Liu et al. 2018). 

Integration of ecological data (e.g., soil type) could help understand the role of those factors in 

persistence, but we were unable to relate landowner contact information to where the BMP was 

installed (i.e., landowner home addresses may be in different locations than their farms). If 

geographic coordinates of each farm were available, we could have assessed how soil type, flood 

frequency, or land susceptibility to erosion influenced persistence. 

Summary and conclusions  

 Our results add to the growing academic literature about rates of BMP persistence in 

agricultural conservation programs and its contribution to stream health goals. Other studies 

estimated persistence to range from 31% to 85%, but all except one focused on behavioral 

intentions rather than actual persistence, which may not align perfectly (Dayer et al. 2018). 

Jackson-Smith et al. (2010) found persistence to be 83% in the Little Bear River watershed of 

northern Utah, United States. Our estimate of 86%, and the BMPs assessed, are quite similar to 
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those of Jackson-Smith et al. (2010) whose data contained similar numbers of fencing and 

prescribed grazing but fewer instances of off-stream watering structures. Our estimate may be 

slightly higher because Jackson-Smith et al. (2010) verified persistence in the field but we did 

not. Barnes et al. (2020, 2023) found 67% of landowners persisted in cropland retirement after 

enrollment in the Conservation Reserve Program. However, cropland retirement is quite different 

than the practices we studied, which may explain the lower rates of persistence. Our results 

represent an initial assessment of BMP persistence in southwest Virginia, which can feed into 

ecological models that distinguish the relative importance of promoting persistence versus initial 

adoption of BMPs in achieving stream health goals.  

We found that using mixed methods (i.e., combining qualitative and quantitative 

approaches) is crucial for understanding landowners’ behaviors. Mixed methods allow 

researchers to use narrative to add meaning to numbers, use numbers to add precision to 

narrative, and allow results to be corroborated (Johnson and Onwuegbuzie 2004). We initially 

intended to focus only on a quantitative analysis but phone calls and notes left by the landowners 

revealed a much more nuanced picture of persistence that would not have been revealed by a 

quantitative analysis alone. For example, one landowner marked in the survey that they no longer 

used a practice (i.e., reversion) but then wrote a note indicating that they had built new wells, 

which would actually be a case of persistence. We encourage future studies to explore mixed-

methods approaches that allow for landowners to detail their thoughts and opinions. For instance, 

future studies could include both open- and closed-ended questions in a survey or complement 

survey work with interviews. Our survey did include an open-ended question but would have 

benefited from additional questions that were practice-specific and explored why landowners 

chose to revert.  
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 Our results have practical implications for state and federal agencies that work directly 

with landowners. If encouraging persistence is identified as a policy or programmatic goal, then 

our results reveal some areas that could be explored for creating behavior-change strategies. 

Allocating more funding for continuing BMPs already initiated (as opposed to building new 

practices) could be an effective first step in increasing persistence, especially for landowners 

who have limited resources. However, our results reveal that in many cases persistence could be 

encouraged without financial incentives because many landowners (n = 20) were interested in 

non-financial forms of support from agencies, such as additional information. Targeted 

messaging (e.g., Metcalf et al. 2019; Reddy et al. 2020) could be used to encourage persistence 

in those cases where landowner finances are not limiting. Based on our results, targeted 

messaging could focus on the benefits that persistence accrues for either the farm itself or the 

greater environment, depending on specific landowner motivations. If targeted messaging is 

used, our survey revealed that the preferred means of communication were printed materials and 

direct conversations with professionals (Table 3).   

Persistence could be encouraged by developing a method to track when farm tenure 

changes and ensuring that responsibility for BMP maintenance is transferred. Technically, the 

original applicant to the BMP program is liable for maintaining practices when farm tenure 

changes (unless the Agricultural Best Management Practice Maintenance Agreement 

Transferring Responsibility for Best Management Practice form is completed), but realistically 

the BMPs are often no longer used. Our qualitative analysis revealed 20 cases (21%) where the 

landowner either no longer farmed or the farm was sold. For example, one landowner stated, 

“The previous owner of the property had waterers installed”, but then indicated they did not have 

BMPs and were not required to maintain them. In many cases we could not verify that these 
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lands truly had BMPs installed, or the land was still being farmed, but it is highly likely that 

these were instances of reversion. If so, then persistence could be increased by facilitating the 

appropriate transfer of the BMP liability, possibly starting with ensuring that new landowners are 

aware of their obligations. 

 In summary, our paper adds to the growing literature about persistence in BMPs after 

cost-share contracts end and provides some practical ways that agencies could promote 

persistence. Our results indicated that persistence is high for the practices we investigated, which 

evidences the commitment of farmers to the environment and the quality of work done by state 

and federal agencies to interface with landowners and install BMPs. Although stream health 

goals have not been met in many locations, widespread participation in BMP programs has the 

potential to balance agricultural production with stream health. 
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Tables 

Table 1. We coded open-ended questions in the survey, notes written in the survey margins, and phone conversations, then identified 

six emergent categories using a modified grounded-theory approach. Descriptions of the criteria used to assign the codes and 

examples of quotes that were given the code are provided. BMP = best management practice 

Category Code Description Example 

Success  

(n = 23) 

Improve  

(n = 14) 
The BMP improved the operation. 

 “…without this program I would not be able to 

produce 10,000–15,000 lb of beef for consumers.” 

Environment  

(n = 19) 
The BMP improved environmental quality.  

“Very exciting to witness the wildlife and bird 

benefitting from both programs on approx. 28 acres 

here.” 

Success 

(n = 2) 
The reason for BMP success was not specified.  “Practice was successful and you can see the results.” 

Values 

(n = 14) 

Distrust 

(n = 5) 
Government or agency distrust was mentioned.   

“Our concern is government confiscation of 

waterways by the Federal Government (as attempted 

by President Obama). Those who own the land are 

the best stewards of the land, not a bureaucrat of 

Washington, DC sitting at a desk.” 

Future 

Generations 

(n = 2) 

Choices were influenced by future generations.  

“Yes, practices are put in place to help ensure future 

generations can have & enjoy the resource that so 

many currently abuse.” 

Equity 

(n = 3) 
Funds should be more equitably distributed.  

“The contracts should be spread out among all farms 

not just a few that seem to set the bulk of state or 

federal funds!!” 
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Common Sense 

(n = 3) 

A common-sense approach to management should be 

used.  

“Common sense approach to reinstall fence practices 

upon flood or wildlife damage during time of 

contract.” 

Honest 

(n = 2) 

Honesty, or dishonesty, of the agency personnel was 

mentioned. 

 “I was told upfront what the practices would provide 

for my property and me personally. In turn I was told 

what I was expect to provide from my end of the 

agreement.” 

Support  

(n = 39) 

Service (n = 8) 
The landowner received quality service from agency 

personnel.  

“The USDA office in Abingdon VA with Bill Moss 

and Jason Haynes was very helpful and 

professional.”  

Money (n = 23)  Additional funding was desired.  “More payments to farmer.” 

Reinstall  

(n = 6) 

Practices should be reinstalled or fixed if damage 

occurs during contract.  

“Common sense approach to reinstall fence practices 

upon flood or wildlife damage during time of 

contract.” 

Information   

(n = 7)  
More information from agencies was desired.  “To meet with local agency to see other opportunity.” 

Time (n = 2) Time was mentioned as a limiting resource.  “Finding labor, time, & money to continue.” 

Labor (n = 2) Labor was mentioned as a limiting resource.  “Finding labor, time, & money to continue.” 

Assistance  

(n = 14) 

The landowner desired additional assistance from 

agency personnel but was not specific. 
“Continued consultation with NRCS.” 

Turnover 

(n = 20) 

Death (n = 6) The landowner had died. 
“[name redacted] passed away in 2019 and I sold the 

farm.” 

Sold (n = 10) The land had been sold. “I sold the farm and retired in 2014.”  

Retired (n = 6) The landowner retired from farming.  
“[name redacted] is 92 years old, so she no longer 

farms.” 
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Old (n = 6) Age played a role in their decisions.  
“I am old and no longer able to chase our hills and 

valleys.”  

Inherit (n = 2) The farm was inherited. 
“[name redacted] is deceased. I'm his son, and now 

manage the farm.” 

Practice 

(n = 11) 

Died (n = 5) Trees died due to flooding, beaver damage, etc.  

“The tree planting in fenced off areas failed 

miserably. High mortality rate and area overtaken 

with invasive species.” 

Quality (n = 5) 
The quality, or lack thereof, of practices was 

mentioned.  

“I think the fences that is put around the streams 

should be construcked [sic] for years to come.” 

Broke (n = 5) The BMP broke during the contract. 

“When they work there is no reason not to use them. 

I only replaced my ball tank because it became too 

much trouble to keep them working and they froze 

sold in the winter.” 

Ease (n = 2)  
The ease of practice use was a factor in decision 

making.  
“Ease of management.” 

Programmatic 

(n = 7) 

Penalty/Reward 

(n = 1) 

Responsible management choices should be rewarded 

and irresponsible farming choices should be met with 

penalties. 

 “Irresponsible farming should have negative 

financial consequences/penalties, not promoting the 

idea that you have the run the livestock in the streams 

before you qualify for cost share.” 

Flexibility      

(n = 5) 

More flexibility or options regarding conservation 

practices was desired.  
“Fewer restrictions on what the projects provide.” 

Ambiguous    

(n =1) 
Program rules were ambiguous.  

“I didn't reinroll because the new CREP rules were 

too ambiguous." 

Wait (n = 1) Long wait time for payments or installation.  

“Long wait times and delayed payment on programs 

offered should be adjusted to help farmers implement 

programs.” 
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Table 2. Results from a logistic regression model predicting landowner persistence (1) or 

reversion (0) for 285 responses from 84 landowners. Estimates for each coefficient (± standard 

deviation) are reported on the logit scale. Coefficients are defined in the Quantitative Analysis 

section of Materials and Methods. Estimates for non-significant results (NS) are not shown (p > 

0.1). 

Coefficient Estimate p 

Intercept 3.62 ± 1.62 0.03 

Year -1.15 ± 0.40 < 0.01 

BMP attitude 1.65 ± 0.37 < 0.01 

Property value NS 0.18 

Income NS 0.19 

Cost-share NS 0.32 

Environmental motivation 0.94 ± 0.55 0.09 

Environmental attitude -1.31 ± 0.70 0.06 

Trust NS 0.36 

Acre NS 0.50 

Age NS 0.56 

Education NS 0.24 

Male NS 0.85 

Female NS 0.91 
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Table 3. Landowners preferred ways to receive information about soil and water conservation 

issues. Each of 84 landowners selected their top three sources. Entries under “Number” reflect 

the total number of selections across landowners. Respondents that selected “Other” suggested 

they preferred to receive information through email and experienced farmers. 

Source Number 

Printed materials 73 

Conversation with conservation professionals 44 

Workshop 31 

Other internet sources 20 

Conversation with neighbors or friends 20 

Social media 11 

Conversation with family members 6 

Television 2 

Other 2 
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Figures 

 

Figure 1. A complex set of hierarchical factors influence a landowner’s decision to persist or 

revert in implementing best management practices at the conclusion of cost-share funding. 

Factors at the watershed scale influence factors at both the farm and landowner scales, and 

factors at the landowner scale ultimately influence a landowner’s decision to persist or revert, 

which can affect the farm or the landowner (direction of influence is denoted by arrows). The 

asterisks denote the pathways from Dayer et al. (2018) through which persistence can be 

influenced. For our purposes, the social influences pathway from Dayer et al. (2018) is a part of 

the socioeconomic setting. 
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Figure 2. The watersheds (white shapes with darker outline) and counties (grey shapes with 

lighter outline) in southwest Virginia, United States, where we conducted mail surveys to 

understand landowner persistence in using agricultural best management practices (BMPs) after 

cost-share contracts ended. The border of Russel and Washington counties overlaps the southern 

borders of Big Cedar Creek and Big Moccasin Creek watersheds. The ratios represent the 

number of BMPs for which landowners persisted in using after their cost-share contracts ended 

compared to the number of BMPs for which landowners reverted to previous farming practices. 
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Figure 3. Modeled relationship between response to the question “Did the BMP accomplish 

what you wanted?” and probability of persistence (1) or reversion (0) for 285 responses from 84 

landowners (p < 0.01). The response was recorded on a Likert scale from 1 to 5, where 1 = 

strongly disagree and 5 = strongly agree. Dots indicate the predicted value and lines indicate 

90% prediction intervals. The predictInterval function from the library merTools (Knowles and 

Frederick 2023) was used to predict persistence from a simulated dataset where all other 
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continuous variables were held at mean levels, the variable gender was set to “male”, and the 

random effect was set to the landowner with the most responses. BMP = best management 

practice 

  



176 

 

 

Figure 4. Modeled relationship between year since installation and probability of persistence (1) 

or reversion (0) for 285 responses from 84 landowners (p < 0.01). Dots indicate the predicted 

value and lines indicate 90% prediction intervals. The predictInterval function from the library 

merTools (Knowles and Frederick 2023) was used to predict persistence from a simulated 

dataset where all other continuous variables were held at mean levels, the variable gender was set 

to “male”, and the random effect was set to the landowner with the most responses.
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Appendix 

Table 1. Demographic comparison between respondents to the initial survey and respondents to 

the non-response survey.  

Category Response Survey Non-response 

Sex 

Male 69 10 

Female 10 3 

Prefer not to say/no response 5 None 

Education 

< High school 1 None 

High school diploma  29 5 

Associate’s degree 15 4 

Undergraduate degree 19 1 

Graduate or professional degree 13 2 

Prefer not to answer/no response 7 None 

Farm size Open-ended 173.1 ± 192.7 acres 114.7 ± 170.5 acres 

Age Open-ended 66.1 ± 10.6 years 60.9 ± 12.6 years 
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Table 2. The confusion matrix revealed that the logistic regression model predicted persistence 

correctly 89% of the time. This table shows the number of times that persistence and reversion in 

the actual data were predicted correctly by the model. For example, 12 times the data showed 

that a landowner reverted, and the model predicted reversion would occur, but 6 times the data 

showed that a landowner reverted, and the model predicted they would persist. 

  Actual values 

  Reversion Persistence 

P
re

d
ic

te
d

 

v
a
lu

es
 

Reversion 12 26 

Persistence 6 241 

 

  



179 

 

 

Figure 1. Binned residual plot used for assessing the performance of the logistic regression 

model. The data have been divided into 40 bins and the mean residual value versus the mean 

predicted value have been plotted for each bin. If the model were actually true, 95% of the 

binned residuals should fall within the gray lines, which represent ±2 standard-error bounds. The 

plot revealed that much of the data were clustered around 1.0, which was expected because most 

survey responses indicated persistence. Further, >95% of the binned residuals fall outside of the 

gray lines. These trends are slightly concerning; therefore, caution is urged when interpreting the 

model output because predictions may be unreliable. Despite the concerning trends, we felt the 

model was acceptable for interpreting the broad patterns, especially when supported by the 

qualitative results. 
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CONCLUSION 

 My research aimed to understand how conservation practices influence stream health 

with the ultimate goal of providing insight into how conservation practice efficacy can be 

improved. Improving efficacy of conservation practices is necessary for protecting stream health 

while producing food. Often, studies of conservation practice efficacy are disciplinary in nature 

and focus on either the social or natural sciences, but conservation practice efficacy is 

simultaneously influenced by social and ecological factors. Therefore, a social-ecological 

framework was used to combine approaches from ecological engineering, conservation social 

science, and stream ecology. Integrating these disciplines led to a more robust understanding of 

conservation practice efficacy. For example, the SWAT+ model revealed that nitrogen is likely 

moving through subsurface pathways, which may explain why greater conservation practice 

density did not decrease nitrogen to levels that were not limiting for biota (as indicated by the 

models described in Chapter 2). Therefore, based on the results from Chapter 3, agricultural 

producers could be encouraged to continue using conservation practices after their contracts end 

by focusing messaging from agencies on how the practice accomplishes the producer’s goals. 

Future research that aims to improve agricultural conservation programs would benefit from 

research that integrates both social and natural sciences to understand what conservation 

practices are needed, where they are needed, and ways facilitate voluntary use of practices. 

Key findings 

 Chapter 1 identified landscape factors that influence pollutant dynamics, which is an 

initial step to understanding where conservation practices are most needed and what practices 

will be most effective. The SWAT+ model revealed that increasing water movement through the 

soil led to improved estimates of streamflow — likely mimicking the karst topography of 
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southwest Virginia. Because nitrate is dissolved in water and most of the nitrogen in southwest 

Virginia is nitrate, nitrogen is also moving through subsurface pathways. However, the SWAT+ 

model unsatisfactorily predicted nitrogen loads in streams. The SWAT+ model also 

unsatisfactorily predicted sediment loads in streams, which may indicate that sediment loads are 

being derived from the streambank rather than field runoff as assumed by sediment models 

within SWAT+ (Boomer et al., 2008). These results serve to advance SWAT+ application by 

demonstrating the need to develop more accurate models of nitrogen movement through 

subsurface pathways and sediment erosion from streambanks. Further, these results in 

conjunction with Chapter 2, reveal which conservation practices could be beneficial for 

improving stream health in karst environments with cattle grazing (discussed in the section 

Synthesis). 

 Building on Chapter 1, my second chapter investigated stream health responses to 

conservation practice installation. Ultimately, biotic responses provide the best indicator of 

stream health, but many studies only focus on water quality responses to conservation practice 

installation and those that do focus on biotic responses provide ambiguous results (e.g., Holmes 

et al., 2016; Sowa et al., 2016). Ambiguous results may stem from failure to account for the 

complex pathways through which biota are influenced by conservation practice installation. I 

found that current conservation practice densities can stabilize streambanks and total suspended 

solids (Chapter 2, Figure 3), but those changes were not translated to decreased embeddedness or 

improved biotic indices (Chapter 2, Figures 9 and 10). Biotic indices may not have responded to 

changes in water quality and habitat because conditions did not meet thresholds where the biotic 

assemblage changes (Chapter 2, Figures 4–8).  
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 My final chapter used methods from the social sciences to learn more about a key social 

component of conservation practice efficacy — persistence. Persistence occurs when producers 

continue to use their practices after cost-share contracts end (Dayer et al., 2018) and is often an 

unspoken goal of conservation incentive programs. Considering the potential long lag times for 

nitrate movement through the groundwater (Meals et al., 2010), persistence could be critically 

important for keeping practices in place long enough to achieve stream health goals. I found that 

persistence was high in southwest Virginia, but opportunities exist to encourage greater 

persistence. For example, producers indicated that many riparian buffers were destroyed by 

wildlife or floods. There were also many cases where producers had retired and these may be 

cases of reversion, which could mean that my research underestimated persistence. If desired by 

management agencies, persistence could be encouraged by allocating more funding to 

maintenance, focusing messaging on how the conservation practice accomplished a producer’s 

goals, or better tracking of land tenure changes.     

Synthesis 

 The combined results from Chapters 1 and 2 provide insight into what conservation 

practices would be most effective in karst environments with cattle grazing. Nitrogen pollution is 

a persistent problem in southwest Virginia and innovative conservation practices may be 

required to reduce nitrogen loads within streams. Current conservation practices are unable to 

reduce total nitrogen below 1.4 mg/L (Chapter 2, Figure 3) but the biotic community begins to 

change at 0.6 mg/L (Chapter 2, Figure 4). The SWAT+ model showed that much of the water, 

and consequently nitrogen, is moving through the soil; therefore, conservation practices that stop 

nitrogen at its source may be most effective for reducing nitrogen loads in streams (Capel et al., 

2018). Conservation practices that stop pollutants at their source, specifically nutrient 
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management plans, are already quite common in southwest Virginia; therefore, innovative and 

novel conservation practices may need to be developed to remediate nitrogen. Results from 

Chapters 1 and 2 suggest that streambank erosion is a large source of sediment loads in streams 

and current conservation practices can improve bank stability (Chapter 2, Figure 10) but not to 

levels that protect biota (Chapter 2, Figures 9 and 10). Greater densities of current practices may 

be needed to mitigate negative effects of eroding streambanks.  

Achieving greater conservation practice densities and creating new types of practices 

may require interdisciplinary solutions. For example, integrating conservation social science into 

ecological research can lead to improved and more equitable management outcomes (Bennet et 

al., 2017). Results from Chapter 3 showed that producers’ attitudes towards conservation 

practices and motivations for using those practices were important reasons they chose to 

continue using practices after their cost-share contracts ended. Therefore, targeting messaging 

based on producers’ motivations to encourage positive attitudes towards conservation practices 

may help to keep conservation practices on the ground long enough to observe improvements in 

stream health. Conservation social science could also be used to develop innovative conservation 

practices and test their acceptance by producers (Bennet et al., 2022).  

Future research 

The hard work, time, and money invested by producers, the Soil and Water Conservation 

Districts, Natural Resources Conservation Service, and other stakeholders is yielding benefits for 

some aspects of stream health in southwest Virginia. However, much work is still needed to 

improve other components of stream health and to ensure healthy streams into the future. 

Interdisciplinary research can provide novel insights into how both the landscape and people 

function, so that conservation programs are able to achieve ecologically and socially beneficial 
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results. For example, my results revealed that innovative practices might be necessary to reduce 

nitrogen to levels that are no longer limiting for biota, which would require interdisciplinary 

research. Designing a study that could reduce nitrate levels in streams would require integration 

of hydrology, conservation social science, ecology, and engineering. Concepts from hydrology 

could lead to a better understanding of the source of nitrogen in streams (i.e., legacy nitrate in the 

groundwater or nitrogen constantly being leached from manure on the landscape). After 

understanding the source of nitrogen, engineers can work to design strategies to mitigate the 

pollution source. In concert with the design of the practice, social scientists could determine if 

the practice would be equitable and socially acceptable and develop strategies to encourage 

voluntary uptake of the new practices. Finally, ecologists would determine if stream health goals 

will be met by the newly designed conservation practice. Interdisciplinary studies as described 

here will lead to agricultural conservation practices that are socially acceptable and are able to 

achieve desired stream health outcomes. 
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